34 resultados para Transmission networks
Resumo:
In the IEEE 802.11 MAC layer protocol, there are different trade-off points between the number of nodes competing for the medium and the network capacity provided to them. There is also a trade-off between the wireless channel condition during the transmission period and the energy consumption of the nodes. Current approaches at modeling energy consumption in 802.11 based networks do not consider the influence of the channel condition on all types of frames (control and data) in the WLAN. Nor do they consider the effect on the different MAC and PHY schemes that can occur in 802.11 networks. In this paper, we investigate energy consumption corresponding to the number of competing nodes in IEEE 802.11's MAC and PHY layers in error-prone wireless channel conditions, and present a new energy consumption model. Analysis of the power consumed by each type of MAC and PHY over different bit error rates shows that the parameters in these layers play a critical role in determining the overall energy consumption of the ad-hoc network. The goal of this research is not only to compare the energy consumption using exact formulae in saturated IEEE 802.11-based DCF networks under varying numbers of competing nodes, but also, as the results show, to demonstrate that channel errors have a significant impact on the energy consumption.
Resumo:
A new configurable architecture is presented that offers multiple levels of video playback by accommodating variable levels of network utilization and bandwidth. By utilizing scalable MPEG-4 encoding at the network edge and using specific video delivery protocols, media streaming components are merged to fully optimize video playback for IPv6 networks, thus improving QoS. This is achieved by introducing “programmable network functionality” (PNF) which splits layered video transmission and distributes it evenly over available bandwidth, reducing packet loss and delay caused by out-of-profile DiffServ classes. An FPGA design is given which gives improved performance, e.g. link utilization, end-to-end delay, and that during congestion, improves on-time delivery of video frames by up to 80% when compared to current “static” DiffServ.
Resumo:
Cooperative MIMO (Multiple Input–Multiple Output) allows multiple nodes share their antennas to emulate antenna arrays and transmit or receive cooperatively. It has the ability to increase the capacity for future wireless communication systems and it is particularly suited for ad hoc networks. In this study, based on the transmission procedure of a typical cooperative MIMO system, we first analyze the capacity of single-hop cooperative MIMO systems, and then we derive the optimal resource allocation strategy to maximize the end-to-end capacity in multi-hop cooperative MIMO systems. The study shows three implications. First, only when the intra-cluster channel is better than the inter-cluster channel, cooperative MIMO results in a capacity increment. Second, for a given scenario there is an optimal number of cooperative nodes. For instance, in our study an optimal deployment of three cooperative nodes achieve a capacity increment of 2 bps/Hz when compared with direct transmission. Third, an optimal resource allocation strategy plays a significant role in maximizing end-to-end capacity in multi-hop cooperative MIMO systems. Numerical results show that when optimal resource allocation is applied we achieve more than 20% end-to-end capacity increment in average when compared with an equal resource allocation strategy.
Resumo:
In this paper, analysis and synthesis approach for two new variants within the Class-EF power amplifier (PA) family is elaborated. These amplifiers are classified here as Class-E3 F2 and transmission-line (TL) Class-E3 F 2. The proposed circuits offer means to alleviate some of the major issues faced by existing topologies such as substantial power losses due to the parasitic resistance of the large inductor in the Class-EF load network and deviation from ideal Class-EF operation due to the effect of device output inductance at high frequencies. Both lumped-element and transmission-line load networks for the Class-E 3 F PA are described. The load networks of the Class-E3 F and TL Class-E 3 F2amplifier topologies developed in this paper simultaneously satisfy the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Optimum circuit component values are analytically derived and validated by harmonic balance simulations. Trade-offs between circuit figures of merit and component values with some practical limitations being considered are discussed. © 2010 IEEE.
Resumo:
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.
Resumo:
Heat pumps can provide domestic heating at a cost that is competitive with oil heating in particular. If the electricity supply contains a significant amount of renewable generation, a move from fossil fuel heating to heat pumps can reduce greenhouse gas emissions. The inherent thermal storage of heat pump installations can also provide the electricity supplier with valuable flexibility. The increase in heat pump installations in the UK and Europe in the last few years poses a challenge for low-voltage networks, due to the use of induction motors to drive the pump compressors. The induction motor load tends to depress voltage, especially on starting. The paper includes experimental results, dynamic load modelling, comparison of experimental results and simulation results for various levels of heat pump deployment. The simulations are based on a generic test network designed to capture the main characteristics of UK distribution system practice. The simulations employ DIgSlILENT to facilitate dynamic simulations that focus on starting current, voltage variations, active power, reactive power and switching transients.
Resumo:
This article introduces a resource allocation solution capable of handling mixed media applications within the constraints of a 60 GHz wireless network. The challenges of multimedia wireless transmission include high bandwidth requirements, delay intolerance and wireless channel availability. A new Channel Time Allocation Particle Swarm Optimization (CTA-PSO) is proposed to solve the network utility maximization (NUM) resource allocation problem. CTA-PSO optimizes the time allocated to each device in the network in order to maximize the Quality of Service (QoS) experienced by each user. CTA-PSO introduces network-linked swarm size, an increased diversity function and a learning method based on the personal best, Pbest, results of the swarm. These additional developments to the PSO produce improved convergence speed with respect to Adaptive PSO while maintaining the QoS improvement of the NUM. Specifically, CTA-PSO supports applications described by both convex and non-convex utility functions. The multimedia resource allocation solution presented in this article provides a practical solution for real-time wireless networks.
Resumo:
This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.
Resumo:
This paper exploits an amplify-and-forward (AF) two-way relaying network (TWRN), where an energy constrained relay node harvests energy with wireless power transfer. Two bidirectional protocols, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, are considered. Three wireless power transfer policies, namely, 1) dual-source (DS) power transfer; 2) single-fixed-source (SFS) power transfer; and 3) single-best-source (SBS) power transfer are proposed and well-designed based on time switching receiver architecture. We derive analytical expressions to determine the throughput both for delay-limited transmission and delay-tolerant transmission. Numerical results corroborate our analysis and show that MABC protocol achieves a higher throughput than TDBC protocol. An important observation is that SBS policy offers a good tradeoff between throughput and power.
Resumo:
Cognitive radio has emerged as an essential recipe for future high-capacity high-coverage multi-tier hierarchical networks. Securing data transmission in these networks is of utmost importance. In this paper, we consider the cognitive wiretap channel and propose multiple antennas to secure the transmission at the physical layer, where the eavesdropper overhears the transmission from the secondary transmitter to the secondary receiver. The secondary receiver and the eavesdropper are equipped with multiple antennas, and passive eavesdropping is considered where the channel state information of the eavesdropper’s channel is not available at the secondary transmitter. We present new closedform expressions for the exact and asymptotic secrecy outage probability. Our results reveal the impact of the primary network on the secondary network in the presence of a multi-antenna wiretap channel.
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multi-antenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the cellular base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, we propose a new power transfer policy, namely, best power beacon (BPB) power transfer. To characterize the power transfer reliability of the proposed policy, we derive new closed-form expressions for the exact power outage probability and the asymptotic power outage probability with large antenna arrays at PBs. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), and 2) nearest receiver selection (NRS). To assess the secrecy performance, we derive new expressions for the secrecy throughput considering the two receiver selection schemes using the BPB power transfer policies. We show that secrecy performance improves with increasing densities of PBs and D2D receivers because of a larger multiuser diversity gain. A pivotal conclusion is reached that BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead.
Resumo:
We investigate a collision-sensitive secondary network that intends to opportunistically aggregate and utilize spectrum of a primary network to achieve higher data rates. In opportunistic spectrum access with imperfect sensing of idle primary spectrum, secondary transmission can collide with primary transmission. When the secondary network aggregates more channels in the presence of the imperfect sensing, collisions could occur more often, limiting the performance obtained by spectrum aggregation. In this context, we aim to address a fundamental query, that is, how much spectrum aggregation is worthy with imperfect sensing. For collision occurrence, we focus on two different types of collision: one is imposed by asynchronous transmission; and the other by imperfect spectrum sensing. The collision probability expression has been derived in closed-form with various secondary network parameters: primary traffic load, secondary user transmission parameters, spectrum sensing errors, and the number of aggregated sub-channels. In addition, the impact of spectrum aggregation on data rate is analysed under the constraint of collision probability. Then, we solve an optimal spectrum aggregation problem and propose the dynamic spectrum aggregation approach to increase the data rate subject to practical collision constraints. Our simulation results show clearly that the proposed approach outperforms the benchmark that passively aggregates sub-channels with lack of collision awareness.
Resumo:
Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS.
Resumo:
In this paper, we study a two-phase underlay cognitive relay network, where there exists an eavesdropper who can overhear the message. The secure data transmission from the secondary source to secondary destination is assisted by two decode-and-forward (DF) relays. Although the traditional opportunistic relaying technique can choose one relay to provide the best secure performance, it needs to continuously have the channel state information (CSI) of both relays, and may result in a high relay switching rate. To overcome these limitations, a secure switch-and-stay combining (SSSC) protocol is proposed where only one out of the two relays is activated to assist the secure data transmission, and the secure relay switching occurs when the relay cannot support the secure communication any longer. This security switching is assisted by either instantaneous or statistical eavesdropping CSI. For these two cases, we study the system secure performance of SSSC protocol, by deriving the analytical secrecy outage probability as well as an asymptotic expression for the high main-to-eavesdropper ratio (MER) region. We show that SSSC can substantially reduce the system complexity while achieving or approaching the full diversity order of opportunistic relaying in the presence of the instantaneous or statistical eavesdropping CSI.
Resumo:
To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.