59 resultados para Transcriptional repressor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotherapy-induced interleukin-8 (IL-8) signaling reduces the sensitivity of prostate cancer cells to undergo apoptosis. In this study, we investigated how endogenous and drug-induced IL-8 signaling altered the extrinsic apoptosis pathway by determining the sensitivity of LNCaP and PC3 cells to administration of the death receptor agonist tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induced concentration-dependent decreases in LNCaP and PC3 cell viability, coincident with increased levels of apoptosis and the potentiation of IL-8 secretion. Administration of recombinant human IL-8 was shown to increase the mRNA transcript levels and expression of c+FLIPL and c-FLIPS, two isoforms of the endogenous caspase-8 inhibitor. Pretreatment with the CXCR2 antagonist AZ10397767 significantly attenuated IL-8-induced c-FLIP mRNA up-regulation whereas inhibition of androgen receptor- and/or nuclear factor-kappa B-mediated transcription attenuated IL-8-induced c-FLIP expression in LNCaP and PC3 cells, respectively. Inhibition of c-FLIP expression was shown to induce spontaneous apoptosis in both cell lines and to sensitize these prostate cancer cells to treatment with TRAIL, oxaliplatin, and docetaxel. Coadministration of AZ10397767 also increased the sensitivity of PC3 cells to the apoptosis-inducing effects of recombinant TRAIL, most likely due to the ability of this antagonist to block TRAIL- and IL-8-induced up-regulation of c-FLIP in these cells. We conclude that endogenous and TRAIL-induced IL-8 signaling can modulate the extrinsic apoptosis pathway in prostate cancer cells through direct transcriptional regulation of c-FLIP. Therefore, targeted inhibition of IL-8 signaling or c-FLIP expression in prostate cancer may be an attractive therapeutic strategy to sensitize this stage of disease to chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phnA gene that encodes the carbon-phosphorus bond cleavage enzyme phosphonoacetate hydrolase is widely distributed in the environment, suggesting that its phosphonate substrate may play a significant role in biogeochemical phosphorus cycling. Surprisingly, however, no biogenic origin for phosphonoacetate has yet been established. To facilitate the search for its natural source we have constructed a whole-cell phosphonoacetate biosensor. The gene encoding the LysR-type transcriptional activator PhnR, which controls expression of the phosphonoacetate degradative operon in Pseudomonas fluorescens 23F, was inserted in the broad-host-range promoter probe vector pPROBE-NT, together with the promoter region of the structural genes. Cells of Escherichia coli DH5a that contained the resultant construct, pPANT3, exhibited phosphonoacetate-dependent green fluorescent protein fluorescence in response to threshold concentrations of as little as 0.5 µM phosphonoacetate, some 100 times lower than the detection limit of currently available non-biological analytical methods; the pPANT3 biosensor construct in Pseudomonas putida KT2440 was less sensitive, although with shorter response times. From a range of other phosphonates and phosphonoacetate analogues tested, only phosphonoacetaldehyde and arsonoacetate induced green fluorescent protein fluorescence in the E. coli DH5a (pPANT3) biosensor, although at much-reduced sensitivities (50 µM phosphonoacetaldehyde and 500 µM arsonoacetate).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Gene networks are considered to represent various aspects of molecular biological systems meaningfully because they naturally provide a systems perspective of molecular interactions. In this respect, the functional understanding of the transcriptional regulatory network is considered as key to elucidate the functional organization of an organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppressors of cytokine signaling (SOCS) proteins are a family of proteins that are able to act in a classic negative feedback loop to regulate cytokine signal transduction. The regulation of the immune response by SOCS proteins may contribute to persistent infection or even a fatal outcome. In this study, we have investigated the induction of SOCS 1-3 after peripheral infection with West Nile virus (WNV) or tick-borne encephalitis virus (TBEV) in the murine model. We have shown that the cytokine response after infection of mice with WNV or TBEV induces an upregulation in the brain of mRNA transcripts for SOCS 1 and SOCS 3, but not SOCS 2. We hypothesize that SOCS proteins may play a role in limiting cytokine responses in the brain as a neuroprotective mechanism, which may actually enhance the ability of neuroinvasive viruses such as WNV and TBEV to spread and cause disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noncoding RNA is emerging as an important regulator of gene expression in many organisms. We are characterizing RNA-mediated chromatin silencing of the Arabidopsis major floral repressor gene, FLC. Through suppressor mutagenesis, we identify a requirement for CstF64 and CstF77, two conserved RNA 3'-end-processing factors, in FLC silencing. However, FLC sense transcript 3' processing is not affected in the mutants. Instead, CstF64 and CstF77 are required for 3' processing of FLC antisense transcripts. A specific RNA-binding protein directs their activity to a proximal antisense polyadenylation site. This targeted processing triggers localized histone demethylase activity and results in reduced FLC sense transcription. Targeted 3' processing of antisense transcripts may be a common mechanism triggering transcriptional silencing of the corresponding sense gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Burkholderia cenocepacia is a Gram-negative opportunistic pathogen displaying high resistance to antimicrobial peptides and polymyxins. We identified mechanisms of resistance by analyzing transcriptional changes to polymyxin B treatment in three isogenic B. cenocepacia strains with diverse polymyxin B resistance phenotypes: the polymyxin B-resistant parental strain K56-2, a polymyxin B-sensitive K56-2 mutant strain with heptoseless lipopolysaccharide (LPS) (RSF34), and a derivative of RSF34 (RSF34 4000B) isolated through multiple rounds of selection in polymyxin B that despite having a heptoseless LPS is highly polymyxin B-resistant.