38 resultados para Toulouse (Diócesis)
Resumo:
Objective: To investigate the effect of alcohol intake patterns on ischaemic heart disease in two countries with contrasting lifestyles, Northern Ireland and France.
Design: Cohort data from the Prospective Epidemiological Study of Myocardial Infarction (PRIME) were analysed. Weekly alcohol consumption, incidence of binge drinking (alcohol >50 g on at least one day a week), incidence of regular drinking (at least one day a week, and alcohol <50 g if on only one occasion), volume of alcohol intake, frequency of consumption, and types of beverage consumed were assessed once at inclusion. All coronary events that occurred during the 10 year follow-up were prospectively registered. The relation between baseline characteristics and incidence of hard coronary events and angina events was assessed by Cox's proportional hazards regression analysis.
Setting: One centre in Northern Ireland (Belfast) and three centres in France (Lille, Strasbourg, and Toulouse).
Participants: 9778 men aged 50-59 free of ischaemic heart disease at baseline, who were recruited between 1991 and 1994.
Main outcome measures: Incident myocardial infarction and coronary death ("hard" coronary events), and incident angina pectoris.
Results: A total of 2405 men from Belfast and 7373 men from the French centres were included in the analyses, 1456 (60.5%) and 6679 (90.6%) of whom reported drinking alcohol at least once a week, respectively. Among drinkers, 12% (173/1456) of men in Belfast drank alcohol every day compared with 75% (5008/6679) of men in France. Mean alcohol consumption was 22.1 g/day in Belfast and 32.8 g/day in France. Binge drinkers comprised 9.4% (227/2405) and 0.5% (33/7373) of the Belfast and France samples, respectively. A total of 683 (7.0%) of the 9778 participants experienced ischaemic heart disease events during the 10 year follow-up: 322 (3.3%) hard coronary events and 361 (3.7%) angina events. Annual incidence of hard coronary events per 1000 person years was 5.63 (95% confidence interval 4.69 to 6.69) in Belfast and 2.78 (95% CI 2.41 to 3.20) in France. After multivariate adjustment for classic cardiovascular risk factors and centre, the hazard ratio for hard coronary events compared with regular drinkers was 1.97 (95% CI 1.21 to 3.22) for binge drinkers, 2.03 (95% CI 1.41 to 2.94) for never drinkers, and 1.57 (95% CI 1.11 to 2.21) for former drinkers for the entire cohort. The hazard ratio for hard coronary events in Belfast compared with in France was 1.76 (95% CI 1.37 to 2.67) before adjustment, and 1.09 (95% CI 0.79 to 1.50) after adjustment for alcohol patterns and wine drinking. Only wine drinking was associated with a lower risk of hard coronary events, irrespective of the country.
Conclusions: Regular and moderate alcohol intake throughout the week, the typical pattern in middle aged men in France, is associated with a low risk of ischaemic heart disease, whereas the binge drinking pattern more prevalent in Belfast confers a higher risk.
Resumo:
In this preliminary case study, we investigate how inconsistency in a network intrusion detection rule set can be measured. To achieve this, we first examine the structure of these rules which incorporate regular expression (Regex) pattern matching. We then identify primitive elements in these rules in order to translate the rules into their (equivalent) logical forms and to establish connections between them. Additional rules from background knowledge are also introduced to make the correlations among rules more explicit. Finally, we measure the degree of inconsistency in formulae of such a rule set (using the Scoring function, Shapley inconsistency values and Blame measure for prioritized knowledge) and compare the informativeness of these measures. We conclude that such measures are useful for the network intrusion domain assuming that incorporating domain knowledge for correlation of rules is feasible.
Resumo:
Autonomic management can be used to improve the QoS provided by parallel/distributed applications. We discuss behavioural skeletons introduced in earlier work: rather than relying on programmer ability to design “from scratch” efficient autonomic policies, we encapsulate general autonomic controller features into algorithmic skeletons. Then we leave to the programmer the duty of specifying the parameters needed to specialise the skeletons to the needs of the particular application at hand. This results in the programmer having the ability to fast prototype and tune distributed/parallel applications with non-trivial autonomic management capabilities. We discuss how behavioural skeletons have been implemented in the framework of GCM(the Grid ComponentModel developed within the CoreGRID NoE and currently being implemented within the GridCOMP STREP project). We present results evaluating the overhead introduced by autonomic management activities as well as the overall behaviour of the skeletons. We also present results achieved with a long running application subject to autonomic management and dynamically adapting to changing features of the target architecture.
Overall the results demonstrate both the feasibility of implementing autonomic control via behavioural skeletons and the effectiveness of our sample behavioural skeletons in managing the “functional replication” pattern(s).
Resumo:
Geologic and environmental factors acting over varying spatial scales can control
trace element distribution and mobility in soils. In turn, the mobility of an element in soil will affect its oral bioaccessibility. Geostatistics, kriging and principal component analysis (PCA) were used to explore factors and spatial ranges of influence over a suite of 8 element oxides, soil organic carbon (SOC), pH, and the trace elements nickel (Ni), vanadium (V) and zinc (Zn). Bioaccessibility testing was carried out previously using the Unified BARGE Method on a sub-set of 91 soil samples from the Northern Ireland Tellus1 soil archive. Initial spatial mapping of total Ni, V and Zn concentrations shows their distributions are correlated spatially with local geologic formations, and prior correlation analyses showed that statistically significant controls were exerted over trace element bioaccessibility by the 8 oxides, SOC and pH. PCA applied to the geochemistry parameters of the bioaccessibility sample set yielded three principal components accounting for 77% of cumulative variance in the data
set. Geostatistical analysis of oxide, trace element, SOC and pH distributions using 6862 sample locations also identified distinct spatial ranges of influence for these variables, concluded to arise from geologic forming processes, weathering processes, and localised soil chemistry factors. Kriging was used to conduct a spatial PCA of Ni, V and Zn distributions which identified two factors comprising the majority of distribution variance. This was spatially accounted for firstly by basalt rock types, with the second component associated with sandstone and limestone in the region. The results suggest trace element bioaccessibility and distribution is controlled by chemical and geologic processes which occur over variable spatial ranges of influence.
Resumo:
Abstract. Modern business practices in engineering are increasingly turning to post manufacture service provision in an attempt to generate additional revenue streams and ensure commercial sustainability. Maintainability has always been a consideration during the design process but in the past it has been generally considered to be of tertiary importance behind manufacturability and primary product function in terms of design priorities. The need to draw whole life considerations into concurrent engineering (CE) practice has encouraged companies to address issues such as maintenance, earlier in the design process giving equal importance to all aspects of the product lifecycle. The consideration of design for maintainability (DFM) early in the design process has the potential to significantly reduce maintenance costs, and improve overall running efficiencies as well as safety levels. However a lack of simulation tools still hinders the adaptation of CE to include practical elements of design and therefore further research is required to develop methods by which ‘hands on’ activities such as maintenance can be fully assessed and optimised as concepts develop. Virtual Reality (VR) has the potential to address this issue but the application of these traditionally high cost systems can require complex infrastructure and their use has typically focused on aesthetic aspects of mature designs. This paper examines the application of cost effective VR technology to the rapid assessment of aircraft interior inspection during conceptual design. It focuses on the integration of VR hardware with a typical desktop engineering system and examines the challenges with data transfer, graphics quality and the development of practical user functions within the VR environment. Conclusions drawn to date indicate that the system has the potential to improve maintenance planning through the provision of a usable environment for inspection which is available as soon as preliminary structural models are generated as part of the conceptual design process. Challenges still exist in the efficient transfer of data between the CAD and VR environments as well as the quantification of any benefits that result from the proposed approach. The result of this research will help to improve product maintainability, reduce product development cycle times and lower maintenance costs.