169 resultados para Titanium mesh
Resumo:
Channelled waves in 2-D periodic anisotropic L-C mesh metamaterials have been investigated. Circuit simulation and the newly developed analytical model of a unit cell have demonstrated full qualitative agreement for both lossless and lossy cases. Isofrequencies for a lattice unit cell and the circuit simulations of finite meshes have shown that propagating waves are channelled from a point source as pencil beams which can travel only along specific trajectories. The beam direction varies with frequency, and at the resonance frequency, the phase and group velocities of the travelling wave are orthogonal. The effect of losses was explored, and it was shown that losses cause qualitative changes of the channelled wave type. It was proven that the channelled waves do not follow the laws of geometrical optics (Snell's law, specular reflection, etc.) at the interfaces of L-C meshes but are governed by the conditions of phase synchronism and impedance matching. Only in the special case of dual L-C and C-L meshes with the interface parallel to the axis of rectangular grid excited at the resonance frequency (X=1) do the channels follow the trajectories of optical rays. A planar mesh test cell has been designed and used for retrieving the unit cell L-C parameters from the S-parameter measurements.
Resumo:
High-resolution synchrotron X-ray diffraction was used to study the phase transformations in titanium alloys. Three titanium alloys were investigated: Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-0.08Si and beta21s. Both room and high temperature measurements were performed. The room temperature experiments were performed to study the structure of the alloys after different heat treatments, namely as received (AR), furnace cooling (FC), water quenching (WQ) and water quenching followed by ageing. The alpha, alpha', alpha'' and beta phases were observed in different combinations depending on the heat treatment conditions and the alloy studied. A multicomponent hexagonal close packed (hcp) alpha phase, with different c and the same a lattice parameters, was detected in Ti-6Al-4V after FC. High temperature synchrotron X-ray diffraction was used for 'in situ' study of the transformations on the sample surface at elevated temperatures. The results were used to trace the kinetics of surface oxidation and the concurrent phase transformations taking place under different conditions. The influence of the temperature and oxygen content on the lattice parameters of the alpha phase was derived and new data obtained on the coefficients of thermal expansion in the different directions of the hcp alpha phase, for Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si.
Resumo:
Dielectronic recombination (DR) has been studied in highly charged He-like Ti ions using an electron beam ion trap. X-rays emitted from radiative recombination (RR) and DR were observed as the electron beam energy was scanned through the resonances. Differential DR resonant strengths were determined by normalizing the DR x-ray intensity to the RR intensity using theoretical RR cross sections. KLn (2 less than or equal to n less than or equal to 5) resonant strengths were determined for He-like Ti ions. The differential resonant strengths were calibrated without reference to any theoretical DR calculations while the electron energy scale was derived with reference to the well-known energy for ionization of the He-like and H-like ions from the ground state. Calibration in this way facilitates a more exacting comparison between theory and experiment than has been reported previously. To facilitate this comparison, total and differential theoretical resonance strengths were calculated. These calculations were found to be in good agreement with the measured results.