39 resultados para Tissue Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aims of this work were to investigate the conversion of a marine alga into hydroxyapatite (HA), and furthermore to design a composite bone tissue engineering scaffold comprising the synthesised HA within a porous bioresorbable polymer. The marine alga Phymatolithon calcareum, which exhibits a calcium carbonate honeycomb structure, with a natural architecture of interconnecting permeable pores (microporosity 4-11 mu m), provided the initial raw material for this study. The objective was to convert the alga into hydroxyapatite while maintaining its porous morphology using a sequential pyrolysis and chemical synthesis processes. Semi-quantitative XRD analysis of the post-hydrothermal material (pyrolised at 700-750 degrees C), indicated that the calcium phosphate (CaP) ceramic most likely consisted of a calcium carbonate macroporous lattice, with hydroxyapatite crystals on the surface of the macropores. Cell visibility (cytotoxicity) investigations of osteogenic cells were conducted on the CaP ceramic (i.e., the material post-hydrothermal analysis) which was found to be non-cytotoxic and displayed good biocompatibility when seeded with MG63 cells. Furthermore, a hot press scaffold fabrication technique was developed to produce a composite scaffold of CaP (derived from the marine alga) in a polycaprolactone (PCL) matrix. A salt leaching technique was further explored to introduce macroporosity to the structure (50-200 mu m). Analysis indicated that the scaffold contained both micro/macroporosity and mechanical strength, considered necessary for bone tissue engineering applications. (C) 2008 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is novel andreports on the in vitro establishment of 3-D cultures of human osteoblasts. These were evaluated for protein markers of bone cells. Sequentially alkaline phosphatase, calcium incorporation for matrix mineralisation and then finally osteocalcin expression were detected in cultures. The extracellular matrix was composed of type 1 collagen and as it mineralised, needle shaped crystals were often associated with matrix vesicles initiating mineralisation. In vivo implantation in nude mice showed progression of mineralisation from the inner region outward with peripheral cells in a non-mineralised matrix. Host vessels invaded the implanted cell area. The research has relevance to musculoskeletal tissue engineering.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) has many favourable attributes for tissue engineering scaffold applications. A major drawback, however, is its slow degradation rate, typically greater than 3 years. In this study PCL was melt blended with a small percentage of poly(aspartic acid-co-lactide) (PAL) and the degradation behaviour was evaluated in phosphate buffer solution (PBS) at 37 degrees C. The addition of PAL was found to significantly enhance the degradation profile of PCL. Subsequent degradation behaviour was investigated in terms of the polymer's mechanical properties, Molecular weight (M-w), mass changes and thermal characteristics. The results indicate that the addition of PAL accelerates the degradation of PCL, with 20% mass loss recorded after just 7 months in vitro for samples containing 8 wt% PAL. The corresponding pure PCL samples exhibited no mass loss over the same time period. In vitro assessment of PCL and PCL/PAL composites in tissue Culture medium in the absence of cells revealed stable pH readings with time. SEM studies of cell/biomaterial interactions demonstrated biocompatibility of C3H10T1/2 cells with PCL and PCL/PAL composites at all concentrations of PAL additive. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predicable and controlled degradation is not only central to the accurate delivery of bioactive agents and drugs, it also plays a vital role in key aspects of bone tissue engineering. The work addressed in this paper investigates the utilisation of e-beam irradiation in order to achieve a controlled (surface) degradation profile. This study focuses on the modification of commercially and clinically relevant materials, namely poly(L-lactic acid) (PLLA), poly(L-lactide-hydroxyapatite) (PLLA-HA), poly(L-lactide-glycolide) co-polymer (PLG) and poly(L-lactide-DL-lactide) co-polymer (PLDL). Samples were subjected to irradiation treatments using a 0.5 MeV electron beam with delivered surface doses of 150 and 500 kGy. In addition, an acrylic attenuation shield was used for selected samples to control the penetration of the e-beam. E-beam irradiation induced chain scission in all polymers, as characterized by reduced molecular weights and glass transition temperatures (T-g). Irradiation not only produced changes in the physical properties of the polymers but also had associated effects on surface erosion of the materials during hydrolytic degradation. Moreover, the extent to which both mechanical and hydrolytic degradation was observed is synonymous with the estimated penetration of the beam (as controlled by the employment of an attenuation shield). (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research has focused on in vitro expansion of bone marrow stromal cells with the aim of developing cell-based therapies or tissue-engineered constructs. There is debate over whether there is a reduction in stem cells/osteoprogenitors in the bone marrow compartment with increasing age. The aim of this study was to investigate patient factors that affect the progenitor pool in bone marrow samples. Six milliliters of marrow aspirate was obtained from the femoral canal of 38 primary hip replacement patients (aged 28-91). Outcome measures were total nucleated cell count, colony-forming efficiency, alkaline phosphatase expression, and expression of stem cell markers. There was a nonsignificant negative correlation between age and both colony-forming efficiency and stem cell marker expression. However, body mass index showed a positive, significant correlation with colony area and number in men-accounting for up to 75% of the variation. In conclusion, body mass index, not age, was highly predictive of the number of progenitors found in bone marrow, and this relationship was sex specific. These results may inform the clinician's treatment choice when considering bone marrow-based therapies. Further, it highlights the need to widen research into patient factors that affect the adult stem cell population beyond age and reinforces the need to consider sexes separately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of nanophase hydroxyapatite (nHA) is of importance in the field of biomaterials and bone tissue engineering. The bioactive and osteoconductive properties of nHA are of much benefit to a wide range of biomedical applications such as producing bone tissue engineered constructs, coating medical implants, or as a carrier for plasmid DNA in gene delivery. This study aimed to develop a novel low-temperature dispersant-aided precipitation reaction to produce nHA particles (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives of this study were to develop a three-dimensional acellular cartilage matrix (ACM) and investigate its possibility for use as a scaffold in cartilage tissue engineering. Bovine articular cartilage was decellularized sequentially with trypsin, nuclease solution, hypotonic buffer, and Triton x 100 solution; molded with freeze-drying process; and cross-linked by ultraviolet irradiation. Histological and biochemical analysis showed that the ACM was devoid of cells and still maintained the collagen and glycosaminoglycan components of cartilage. Scanning electronic microscopy and mercury intrusion porosimetry showed that the ACM had a sponge-like structure of high porosity. The ACM scaffold had good biocompatibility with cultured rabbit bone marrow mesenchymal stem cells with no indication of cytotoxicity both in contact and in extraction assays. The cartilage defects repair in rabbit knees with the mesenchymal stem cell-ACM constructs had a significant improvement of histological scores when compared to the control groups at 6 and 12 weeks. In summary, the ACM possessed the characteristics that afford it as a potential scaffold for cartilage tissue engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in stem cell science and tissue engineering are being turned into applications and products through a novel medical paradigm known as regenerative medicine. This paper begins by examining the vulnerabilities and risks encountered by the regenerative medicine industry during a pivotal moment in its scientific infancy: the 2000s. Under the auspices of New Labour, British medical scientists and life science innovation firms associated with regenerative medicine, received demonstrative rhetorical pledges of support, aligned with the publication of a number of government initiated reports presaged by Bioscience 2015: Improving National Health, Increasing National Wealth. The Department of Health and the Department of Trade and Industry (and its successors) held industry consultations to determine the best means by which innovative bioscience cultures might be promoted and sustained in Britain. Bioscience 2015 encapsulates the first chapter of this sustainability narrative. By 2009, the tone of this storyline had changed to one of survivability. In the second part of the paper, we explore the ministerial interpretation of the ‘bioscience discussion cycle’ that embodies this narrative of expectation, using a computer-aided content analysis programme. Our analysis notes that the ministerial interpretation of these reports has continued to place key emphasis upon the distinctive and exceptional characteristics of the life science industries, such as their ability to perpetuate innovations in regenerative medicine and the optimism this portends – even though many of the economic expectations associated with this industry have remained unfulfilled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NADPH oxidase (Nox4) produces reactive oxygen species (ROS) that are important for vascular smooth muscle cell (SMC) behavior, but the potential impact of Nox4 in stem cell differentiation is unknown. When mouse embryonic stem (ES) cells were plated on collagen IV-coated dishes/flasks, a panel of SMC-specific genes was significantly and consistently upregulated. Nox4 expression was markedly correlated with such a gene induction as confirmed by real-time PCR, immunofluorescence, and Western blot analysis. Overexpression of Nox4 specifically resulted in increased SMC marker production, whereas knockdown of Nox4 induced a decrease. Furthermore, SMC-specific transcription factors, including serum response factor (SRF) and myocardin were activated by Nox4 gene expression. Moreover, Nox4 was demonstrated to drive SMC differentiation through generation of H(2)O(2). Confocal microscopy analysis indicates that SRF was translocated into the nucleus during SMC differentiation in which SRF was phosphorylated. Additionally, autosecreted transforming growth factor (TGF)-beta(1) activated Nox4 and promoted SMC differentiation. Interestingly, cell lines generated from stem cells by Nox4 transfection and G418 selection displayed a characteristic of mature SMCs, including expression of SMC markers and cells with contractile function. Thus we demonstrate for the first time that Nox4 is crucial for SMC differentiation from ES cells, and enforced Nox4 expression can maintain differentiation status and functional features of stem cell-derived SMCs, highlighting its impact on vessel formation in vivo and vascular tissue engineering in the future.