19 resultados para Ti6Al4V fatica pallinatura ripallinatura
Resumo:
Through an analysis on microstructure and high cycle fatigue (HCF) properties of Ti-6Al-4V alloys which were selected from literature, the effects of microstructure types and microstructure parameters on HCF properties were investigated systematically. The results show that the HCF properties are strongly determined by microstructure types for Ti-6Al-4V. Generally the HCF strengths of different microstructures decrease in the order of bimodal, lamellar and equiaxed microstructure. Additionally, microstructure parameters such as the primary a (a) content and the a grain size in bimodal microstructures, the a lamellar width in lamellar microstructure and the a grain size in equiaxed microstructures, can influence the HCF properties. © 2012 Elsevier Ltd.
Resumo:
Titanium has good biocompatibility and so its alloys are used as implant materials, but they suffer from having poor wear resistance. This research aims to improve the wear resistance and the tensile strength of titanium alloys potentially for implant applications. Titanium alloys Ti–6Al–4V and Ti–6Al–7Nb were subjected to shotpeening process to study the wear and tensile behavior. An improvement in the wear resistance has been achieved due to surface hardening of these alloys by the process of shotpeening. Surface microhardness of shotpeened Ti–6Al–4V and Ti–6Al–7Nb alloys has increased by 113 and 58 HV(0.5), respectively. After shotpeening, ultimate tensile strength of Ti–6Al–4V increased from 1000 MPa to 1150 MPa, higher than improvement obtained for heat treated titanium specimens. The results confirm that shotpeening pre-treatment improved tensile and sliding wear behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys. In addition, shotpeening increased surface roughness.
Resumo:
As an emerging hole-machining methodology, helical milling process has become increasingly popular in aeromaterials manufacturing research, especially in areas of aircraft structural parts, dies, and molds manufacturing. Helical milling process is highly demanding due to its complex tool geometry and the progressive material failure on the workpiece. This paper outlines the development of a 3D finite element model for helical milling hole of titanium alloy Ti-6Al-4V using commercial FE code ABAQUS/Explicit. The proposed model simulates the helical milling hole process by taking into account the damage initiation and evolution in the workpiece material. A contact model at the interface between end-mill bit and workpiece has been established and the process parameters specified. Furthermore, a simulation procedure is proposed to simulate different cutting processes with the same failure parameters. With this finite element model, a series of FEAs for machined titanium alloy have been carried out and results compared with laboratory experimental data. The effects of machining parameters on helical milling have been elucidated, and the capability and advantage of FE simulation on helical milling process have been well presented.
Resumo:
This paper presents an FEM analysis conducted for optimally designing end mill cutters through verifying the cutting tool forces and stresses for milling Titanium alloy Ti-6Al-4 V. Initially, the theoretical tool forces are calculated by considering the cutting edge on a cutting tool as the curve of an intersection over a spherical/flat surface based on the model developed by Lee & Altinas [1]. Considering the lowest tool forces the cutting tool parameters are taken and optimal design of end mill is decided for different sizes. Then the 3D CAD models of the end mills are developed and used for Finite Element Method to verify the cutting forces for milling Ti-6Al-4 V. The cutting tool forces, stress, strain concentration (s), tool wear, and temperature of the cutting tool with the different geometric shapes are simulated considering Ti-6Al-4 V as work piece material. Finally, the simulated and theoretical values are compared and the optimal design of cutting tool for different sizes are validated. The present approach considers to improve the quality of machining surface and tool life with effects of the various parameters concerning the oblique cutting process namely axial, radial and tangential forces. Various simulated test cases are presented to highlight the approach on optimally designing end mill cutters.