17 resultados para Thinning
Resumo:
Introduced browsing animals negatively impact New Zealand's indigenous ecosystems. Eradicating introduced browsers is currently unfeasible at large scales, but culling since the 1960s has successfully reduced populations to a fraction of their earlier sizes. Here we ask whether culling of ungulates has allowed populations of woody plant species to recover across New Zealand forests. Using 73 pairs of permanent fenced exclosure and unfenced control plots, we found rapid increases in sapling densities within exclosures located in disturbed forests, particularly if a seedling bank was already present. Recovery was slower in thinning stands and hampered by dense fern cover. We inferred ungulate diet preference from species recovery rates inside exclosures to test whether culling increased abundance of preferred species across a national network of 574 unfenced permanent forest plots. Across this network, saplings were observed irrespective of their preference to ungulates in the 1970s, but preferred species were rarer within disturbed sites in the 1990s after long-term culling and despite nationwide increases in sapling densities. This indicates that preferred species are relatively heavily affected by browsing after culling, presumably because remaining animals will increase consumption of preferred species as competition is reduced. Our results clearly suggest that culling will not return preferred plants to the landscape immediately, even given suitable conditions for regeneration. Complete removal of ungulates rather than simply reducing their densities may be required for recovery in heavily browsed temperate forests, but since this is only feasible at small spatial scales, management efforts must target sites of high conservation value. © 2012 Elsevier Ltd.
Resumo:
Poly(methylvinylether-co-maleic acid) (PMVE/MA) is commonly used as a component of pharmaceutical platforms, principally to enhance interactions with biological substrates (mucoadhesion). However, the limited knowledge on the rheological properties of this polymer and their relationships with mucoadhesion has negated the biomedical use of this polymer as a mono-component platform. This study presents a comprehensive study of the rheological properties of aqueous PMVE/MA platforms and defines their relationships with mucoadhesion using multiple regression analysis. Using dilute solution viscometry the intrinsic viscosities of un-neutralised PMVE/MA and PMVE/MA neutralised using NaOH or TEA were 22.32 ± 0.89 dL g-1, 274.80 ± 1.94 dL g-1 and 416.49 ± 2.21 dL g-1 illustrating greater polymer chain expansion following neutralisation using Triethylamine (TEA). PMVE/MA platforms exhibited shear-thinning properties. Increasing polymer concentration increased the consistencies, zero shear rate (ZSR) viscosities (determined from flow rheometry), storage and loss moduli, dynamic viscosities (defined using oscillatory analysis) and mucoadhesive properties, yet decreased the loss tangents of the neutralised polymer platforms. TEA neutralised systems possessed significantly and substantially greater consistencies, ZSR and dynamic viscosities, storage and loss moduli, mucoadhesion and lower loss tangents than their NaOH counterparts. Multiple regression analysis enabled identification of the dominant role of polymer viscoelasticity on mucoadhesion (r > 0.98). The mucoadhesive properties of PMVE/MA platforms were considerable and were greater than those of other platforms that have successfully been shown to enhance in vivo retention when applied to the oral cavity, indicating a positive role for PMVE/MA mono-component platforms for pharmaceutical and biomedical applications.