62 resultados para Thermodynamic Cycles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermodynamic analysis of the experimental conditions of the Beckmann rearrangement reaction of oximes into amides has been undertaken to examine whether the reaction is under thermodynamic or kinetic control. To answer this question, the thermodynamic properties of the typical Beckmann rearrangement reactions in the ideal gaseous state-cyclohexanone oxime to caprolactam and 2-butanone oxime to N-methylpropanarnide-were studied by using the quantum mechanical method. Gibbs energy and equilibrium constants of the Beckmann rearrangement have been assessed in the gaseous and the liquid phases. Results of the thermodynamic analysis have shown that Beckmann rearrange ments are kinetically controlled. Thus, a search for possible active ionic liquid based catalysts for the mild reaction conditions has been performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic and its compounds are toxic pollutants for the environment and all living organisms. At present, there is considerable interest in studying new sorbent materials for the removal of arsenic from aqueous solutions. This work discusses the feasibility of arsenic uptake onto dolomite which is considered to be a potential inexpensive adsorbent. Thermodynamic and kinetic experiments were undertaken to assess the capacity and rate of As uptake onto dolomite. Experimental data were mathematically described using adsorption kinetic models, namely pseudo-first-order and pseudo-second-order models. The arsenic removal was found to be dependent on the dosage of dolomite, adsorbent particle size and the presence of various anions. Thermodynamic results indicate that the adsorption follows an exothermic chemisorption process. The experimental data indicate successful removal of As(V) ion from aqueous solution indicating that dolomite be used as an inexpensive treatment process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note presents an analysis which generalizes the results reached by Blackburn and Pelloni (2005) on the relationship between short-term stabilization policy and long-term growth by considering both deliberate (internal) and serendipitous (external) learning mechanisms for productivity growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent announcement of the first genome sequence of a brown macroalga, the filamentous Ectocarpus, has been accompanied by a number of companion papers in New Phytologist. In a paper which contributes to this special issue, we classified the core cell cycle components of Ectocarpus, comparing them to the previously studied cell cycle components of diatoms. We then carried out fluorescence microscopy experiments to show that the Ectocarpus cell cycle could be deregulated during early development to give endopolyploid adults. We discuss here how our findings complement recent studies on endopolyploidy in plant and algal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.