44 resultados para Ternary
Resumo:
Androgen receptor (AR) is essential for the maintenance of the male reproductive systems and is critical for the carcinogenesis of human prostate cancers (PCas). D-type cyclins are closely related to the repression of AR function. It has been well documented that cyclin D1 inhibits AR function through multiple mechanisms, but the mechanism of how cyclin D3 exerts its repressive role in the AR signaling pathway remains to be identified. In the present investigation, we demonstrate that cyclin D3 and the 58-kDa isoform of cyclin-dependent kinase 11 (CDK11p58) repressed AR transcriptional activity as measured by reporter assays of transformed cells and prostate-specific antigen expression in PCa cells. AR, cyclin D3, and CDK11p58 formed a ternary complex in cells and were colocalized in the luminal epithelial layer of the prostate. AR activity is controlled by phosphorylation at specific sites. We found that AR was phosphorylated at Ser-308 by cyclin D3/CDK11p58 in vitro and in vivo, leading to the repressed activity of AR transcriptional activation unit 1 (TAU1). Furthermore, androgen-dependent proliferation of PCa cells was inhibited by cyclin D3/CDK11p58 through AR repression. These data suggest that cyclin D3/CDK11p58 signaling is involved in the negative regulation of AR function.
Resumo:
The adsorption of cadmium(II) on freshly precipitated aluminium(III) hydroxide in the presence of a range of chelates has been investigated. By precipitating the metal, chelate and adsorbent together it is possible to change the pH variation of the metal-complex adsorption from anionic, ligand-like, binding to cationic binding. This is a general phenomenon and is explained by the formation of a ternary Al-O-Cd-L surface species. As a consequence of the preparation method, the pH edge is found to shift to lower pH values in the presence of the chelate which gives rise to an apparent increase in adsorption of Cd2+. This increase is, in general, most pronounced at [chelate] / [metal] > 1. Computer modelling shows that the observed trends result from the competition between Al-O-Cd-L and Al-L for the available aluminium( III) binding sites. The enhanced adsorption in the presence of phenylenediaminetetraacetate is anomalous since it is observed at a [ chelate] / [metal] approximate to 0.1 and cannot be interpreted by the simple competition model.
Resumo:
The Ternary Tree Solver (tts) is a complete solver for propositional satisfiability which was designed to have good performance on the most difficult small instances. It uses a static ternary tree data structure to represent the simplified proposition under all permissible partial assignments and maintains a database of derived propositions known to be unsatisfiable. In the SAT2007 competition version 4.0 won the silver medal for the category handmade, speciality UNSAT solvers and was the top qualifier for the second stage for handmade benchmarks, solving 11 benchmarks which were not solved by any other entrant. We describe the methods used by the solver and analyse the competition Phase 1 results on small benchmarks. We propose a first version of a comprehensive suite of small difficult satisfiability benchmarks (sdsb) and compare the worst-case performance of the competition medallists on these benchmarks.
Resumo:
This work involved the treatment of industrial wastewater from a nylon carpet printing plant which currently receives no treatment and is discharged to sea. As nylon is particularly difficult to dye, acid dyes are required for successful coloration and cause major problems with the plant's effluent disposal in terms of color removal. Granular activated carbon Filtrasorb 400 was used to treat a ternary solution of acid dyes and the process plant effluent containing the dyes in a fixed-bed column system. Experimental data were correlated using the bed depth service time (BDST) model to previously published work by the authors for single dye adsorption. The results were expressed in terms of the BDST adsorption capacity, in milligrams of adsorbate per gram of adsorbent, and indicated that there was a 12-25% decrease iri adsorption capacity in the ternary system compared to the single component system; This reduction has been attributed to competitive adsorption occurring in the ternary component system. Dye adsorption from the process plant effluent showed an approximate 65% decrease in adsorption capacity compared to the ternary solution system. This has been attributed to interference caused by the other colorless textile effluent pollutants found in the process wastewater. A chemical oxygen demand analysis on these components indicated that the dyes accounted for only 14% of the total oxygen demand.
Resumo:
The underwater casting of relatively thin lifts of concrete in water requires the proportioning of highly flowable concrete that can resist water dilution and segregation and spread readily into place. An investigation was carried out to determine the effects of antiwashout admixture concentration, water-cementitious materials ratio, and binder composition on the washout resistance of highly flowable concrete. Two main types of antiwashout admixtures were used: 1) a powdered welan gum at concentrations of 0.07 and 0.15% (by mass of binder); and 2) a liquid-based cellulosic admixture with dosages up to 1.65 L/100 kg of binder. The water-cementitious materials ratios were set at 0.41 and 0.47, corresponding to high-quality underwater concrete. Four binder compositions were used: a standard Canadian Type 10 cement, the same cement with 10% silica fume replacement, the cement with 50% granulated blast-furnace slag replacement, and a ternary cement containing 6% silica fume and 20% Class F fly ash. The concentrations of anti-washout admixture have direct impact on washout resistance. For a given washout loss, greater slump flow consistency can be achieved with the increases in anti-washout admixture concentration and decreases in water-binder ratio. The washout mass loss can be reduced, for a given consistency
Resumo:
Concrete used for underwater repair is often proportioned to spread readily into place and self-consolidate, and to develop high resistance to segregation and water dilution. An investigation was carried out to determine the effect of the dosage of antiwashout admixture, water-cementitious materials ratio (w/cm), and binder composition on the relative residual strength of highly flowable underwater concrete. Two types of antiwashout admixtures were used: a powdered welan gum at 0.07 and 0.15% by mass of binder, and a liquid-based cellulosic admixture employed at a high dosage of 1 to 1.65 L/100 kg of cementitious materials. The w/cms were set at 0.41 and 0.47 to secure adequate performance of underwater concrete for construction and repair. Four binder compositions were used: a Canadian Type 10 cement; a cement with 10% silica fume replacement; a cement with 50% replacement of granulated blast-furnace slag; and a ternary binder containing 6% silica fume and 20% Class F fly ash. Test results indicate that for a given washout mass loss and slump flow consistency, greater relative residual strength can be secured when the dosage of antiwashout admixture is increased, the w/cm is reduced, and a binary binder with 10% silica fume substitution or the ternary binder are employed. Such mixtures can develop relative residual compressive strengths of 85 and 80%, compared to mixtures cast in air, when the value of washout loss is limited to 4 and 6% for mixtures with slump flow values of 450 and 550 mm, respectively.
Resumo:
Concrete placed under water should be proportioned to flow readily into place with minimum materials separation. Unlike concrete cast for deep tremie seals, the use of concrete in repairs often necessitates some free fall of the mixture through water. Such placement conditions lead to greater risk of water erosion and segregation, and should be addressed in proportioning highly flowable underwater concrete. This paper evaluates the effect of free-fall height (FFH) of concrete through water on resulting in-place properties. Concrete was cast in blocks measuring 0.54 x 0.44 x 1 m with the initial FFH in water ranging between 0.25 and 0.60 m. In-place compressive and splitting tensile strengths, unit weight, and depth of washed-out and sedimentation materials were determined. In total, 24 highly flowable mixtures with slump flows greater than 500 mm were investigated. The evaluated mixtures were prepared with various hydraulic binders, including conventional Type 10 cement, a binary mixture with 10% of silica fume (SF), and a ternary binder incorporating 20% of fly ash (FA) and 6% of SF. The mixtures were proportioned with water-binder ratios (w/b) ranging between 0.41 and 0.47. Test results show that the increase of FFH of fresh concrete in water can greatly decrease the residual strength and significantly increase the thickness of washed out and sedimentation materials. The incorporation of 10% of SF, or 20% of FA and 6% of SF, and the reduction of the w/b from 0.47 to 0.41 can, however, lead to a significant increase in washout resistance and residual strength. A relationship between residual strength and the coupled factor of free-fall drop of concrete in water and washout resistance is established.
Resumo:
Anthracene-based, H+-driven, ‘off–on–off’ fluorescent PET (photoinduced electron transfer) switches are immobilized on organic and inorganic polymeric solids in the form of Tentagel® and silica, respectively. The environment of the organic bead displaces apparent switching thresholds towards lower pH values whereas the Si–O- groups of silica electrostatically cause the opposite effect. These switches are ternary logic gate tags, one of which can be particularly useful in strengthening molecular computational identification (MCID) of small solid objects.
Resumo:
We prove that two dual operator spaces $X$ and $Y$ are stably isomorphic if and only if there exist completely isometric normal representations $phi$ and $psi$ of $X$ and $Y$, respectively, and ternary rings of operators $M_1, M_2$ such that $phi (X)= [M_2^*psi (Y)M_1]^{-w^*}$ and $psi (Y)=[M_2phi (X)M_1^*].$ We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being stably isomorphic. We apply these operator space results to prove that certain dual operator algebras are stably isomorphic if and only if they are isomorphic. We provide examples motivated by CSL algebra theory.
Resumo:
Perovskite phase instability of BiMnO3 has been exploited to synthesize epitaxial metal oxide magnetic nanocrystals. Thin film processing conditions are tuned to promote the breakdown of the perovskite precursor into Bi2O3 matrix and magnetic manganese oxide islands. Subsequent cooling in vacuum ensures complete volatization of the Bi2O3, thus leaving behind an array of self-assembled magnetic Mn3O4 nanostructures. Both shape and size can be systematically controlled by the ambient oxygen environments and deposition time.As such, this approach can be extended to any other Bi-based complex ternary oxide system as it primarily hinges on the breakdown of parent Bi-based precursor and subsequent Bi2O3 volatization.
Resumo:
In intestinal epithelial cells, inactivation of APC, a key regulator of the Wnt pathway, activates beta-catenin to initiate tumorigenesis. However, other alterations may be involved in intestinal tumorigenesis. Here we found that RUNX3, a gastric tumor suppressor, forms a ternary complex with beta-catenin/7CF4 and attenuates Wnt signaling activity. A significant fraction of human sporadic colorectal adenomas and Runx3(+/-) mouse intestinal adenomas showed inactivation of RUNX3 without apparent beta-catenin accumulation, indicating that RUNX3 inactivation independently induces intestinal adenomas. In human colon cancers, RUNX3 is frequently inactivated with concomitant beta-catenin accumulation, suggesting that adenomas induced by inactivation of RUNX3 may progress to malignancy. Taken together, these data demonstrate that RUNX3 functions as a tumor suppressor by attenuating Wnt signaling.
Resumo:
Electroless plating of binary Ni-P, ternary Ni-Sn-P and Ni-W-P, and quaternary Ni-W-Sn-P alloy coatings was carried out in alkalicitrate baths. After the plating, several kinds of test were carried out to determine the improvement in the characteristics and properties due to the additional elements as well as to study the change in behaviour when heat treatment was applied to these coatings. The coatings were subjected to X-ray diffraction analysis where it was found that all the coatings were amorphous. Interesting surface morphology features were examined using scanning electron microscopy. Addition of a third element improved the hardness.
Resumo:
The ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ([C(2)mim][NTf2]) was tested as solvent for the separation of aromatic and aliphatic hydrocarbons containing 7 or 8 carbon atoms (the C-7- and C-8-fractions). The liquid-liquid equilibria (LLE) of the ternary systems (heptane + toluene + [C(2)mim][NTf2]) and (octane + ethylbenzene + [C(2)mim][NTf2]), at 25 degrees C, were experimentally determined. The performance of the ionic liquid as the solvent in such systems was evaluated by means of the calculation of the solute distribution ratio and the selectivity. The results were compared to those previously reported for the extraction of benzene from its mixtures with hexane by using the same ionic liquid, therefore analysing the influence of the size of the hydrocarbons. It was found that the ionic liquid is also good for the extraction of C-7- and C-8- fraction aromatic compounds, just a greater amount of ionic liquid being needed to perform an equivalently efficient separation than for the C-6-fraction. It is also discussed how [C(2)mim][NTf2] performs comparably better than the conventional solvent sulfolane. The original 'Non-Random Two-Liquid' (NRTL) equation was used to adequately correlate the experimental LLE data.
Resumo:
The effects of incorporating pulverized fuel ash (PFA) and ground granulated blastfurnace slag (ggbs) on the workability (slump), adiabatic temperature rise during hydration and long-term (up to 570 days) strength of high-strength concretes have been measured. Binary (PFA/ggbs and Portland cement) and ternary (PFA/ggbs plus microsilica and Portland cement) blends at water-binder ratios from 0.38 to 0.20 have been tested. The results show broadly similar effects to those in lower strength concrete, although of differing magnitude in some cases. Some potential advantages of ternary blends for optimization of properties have been demonstrated.
Resumo:
The Escherichia coli transcriptional regulator MarA affects functions that include antibiotic resistance, persistence, and survival. MarA functions as an activator or repressor of transcription utilizing similar degenerate DNA sequences (marboxes) with three different binding site configurations with respect to the RNA polymerase-binding sites. We demonstrate that MarA down-regulates rob transcripts both in vivo and in vitro via a MarA-binding site within the rob promoter that is positioned between the -10 and -35 hexamers. As for the hdeA and purA promoters, which are repressed by MarA, the rob marbox is also in the "backward" orientation. Protein-DNA interactions show that SoxS and Rob, like MarA, bind the same marbox in the rob promoter. Electrophoretic mobility shift analyses with a MarA-specific antibody demonstrate that MarA and RNA polymerase form a ternary complex with the rob promoter DNA. Transcription experiments in vitro and potassium permanganate footprinting analysis show that MarA affects the RNA polymerase-mediated closed to open complex formation at the rob promoter.