178 resultados para Terapeutic relationship
Resumo:
In this study, the surface properties of and work required to remove 12 commercially available and developmental catheters from a model biological medium (agar), a measure of catheter lubricity, were characterised and the relationships between these properties were examined using multiple regression and correlation analysis. The work required for removal of catheter sections (7 cm) from a model biological medium (1% w/w agar) were examined using tensile analysis. The water wettability of the catheters were characterised using dynamic contact angle analysis, whereas surface roughness was determined using atomic force microscopy. Significant differences in the ease of removal were observed between the various catheters, with the silicone-based materials generally exhibiting the greatest ease of removal. Similarly, the catheters exhibited a range of advancing and receding contact angles that were dependent on the chemical nature of each catheter. Finally, whilst the microrugosities of the various catheters differed, no specific relationship to the chemical nature of the biomaterial was apparent. Using multiple regression analysis, the relationship between ease of removal, receding contact angle and surface roughness was defined as: Work done (N mm) 17.18 + 0.055 Rugosity (nm)-0.52 Receding contact angle (degrees) (r = 0.49). Interestingly, whilst the relationship between ease of removal and surface roughness was significant (r = 0.48, p = 0.0005), in which catheter lubricity increased as the surface roughness decreased, this was not the case with the relationship between ease of removal and receding contact angle (r = -0.18, p > 0.05). This study has therefore uniquely defined the contributions of each of these surface properties to catheter lubricity. Accordingly, in the design of urethral catheters. it is recommended that due consideration should be directed towards biomaterial surface roughness to ensure maximal ease of catheter removal. Furthermore, using the method described in this study, differences in the lubricity of the various catheters were observed that may be apparent in their clinical use. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The quantitative assessment of apoptotic index (AI) and mitotic index (MI) and the immunoreactivity of p53, bcl-2, p21, and mdm2 were examined in tumour and adjacent normal tissue samples from 30 patients with colonic and 22 with rectal adenocarcinoma. Individual features and combined profiles were correlated with clinicopathological parameters and patient survival data to assess their prognostic value. Increased AI was significantly associated with increased bcl-2 expression (p
Resumo:
Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.
Resumo:
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), plays important roles in normal vascular homeostasis, and reduced endothelial NO bioactivity is an important feature of vascular disease states. The Glu298Asp (G894T) polymorphic variant of eNOS has been associated with vascular disease, but functional data are lacking. Accordingly, we examined the relationships between NO-mediated endothelial function, the presence of the eNOS Glu298Asp variant, and clinical risk factors for atherosclerosis. Endothelium-dependent vasorelaxations to different agonists were determined in human saphenous veins obtained from patients with coronary artery disease and identified risk factors (n = 104). Patients were genotyped for the eNOS G894T polymorphism. Nitric oxide-mediated endothelial vasorelaxations were highly variable between patients. Reduced vasorelaxations were associated with increased number of clinical risk factors for atherosclerosis (r = - 0.54, P