24 resultados para Telecommunication cables
Resumo:
Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies , somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.
Resumo:
Due to the intermittent nature of renewable generation it is desirable to consider the potential of controlling the demand-side load to smooth overall system demand. The architecture and control methodologies of such a system on a large scale would require careful consideration. Some of these considerations are discussed in this paper; such as communications infrastructure, systems architecture, control methodologies and security. A domestic fridge is used in this paper as an example of a controllable appliance. A layered approach to smart-grid is introduced and it can be observed how each smart-grid component from physical cables, to the end-devices (or smart-applications) can be mapped to these set layers. It is clear how security plays an integral part in each component of the smart-grid so this is also an integral part of each layer. The controllable fridge is described in detail and as one potential smart-grid application which maps to the layered approach. A demonstration system is presented which involves a Raspberry Pi (a low-power, low-cost device representing the appliance controller).
Resumo:
This article proposes a closed-loop control scheme based on joint-angle feedback for cable-driven parallel manipulators (CDPMs), which is able to overcome various difficulties resulting from the flexible nature of the driven cables to achieve higher control accuracy. By introducing a unique structure design that accommodates built-in encoders in passive joints, the seven degrees of freedom (7-DOF) CDPM can obtain joint angle values without external sensing devices, and it is used for feedback control together with a proper closed-loop control algorithm. The control algorithm has been derived from the time differential of the kinematic formulation, which relates the joint angular velocities to the time derivative of cable lengths. In addition, the Lyapunov stability theory and Monte Carlo method have been used to mathematically verify the self-feedback control law that has tolerance for parameter errors. With the aid of co-simulation technique, the self-feedback closed-loop control is applied on a 7-DOF CDPM and it shows higher motion accuracy than the one with an open-loop control. The trajectory tracking experiment on the motion control of the 7-DOF CDPM demonstrated a good performance of the self-feedback control method.
Resumo:
In the last decade, mobile phones and mobile devices using mobile cellular telecommunication network connections have become ubiquitous. In several developed countries, the penetration of such devices has surpassed 100 percent. They facilitate communication and access to large quantities of data without the requirement of a fixed location or connection. Assuming mobile phones usually are in close proximity with the user, their cellular activities and locations are indicative of the user's activities and movements. As such, those cellular devices may be considered as a large scale distributed human activity sensing platform. This paper uses mobile operator telephony data to visualize the regional flows of people across the Republic of Ireland. In addition, the use of modified Markov chains for the ranking of significant regions of interest to mobile subscribers is investigated. Methodology is then presented which demonstrates how the ranking of significant regions of interest may be used to estimate national population, results of which are found to have strong correlation with census data.
Adaptive backstepping droop controller design for multi-terminal high-voltage direct current systems
Resumo:
Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.
Resumo:
In this paper, we consider the transmission of confidential information over a κ-μ fading channel in the presence of an eavesdropper who also experiences κ-μ fading. In particular, we obtain novel analytical solutions for the probability of strictly positive secrecy capacity (SPSC) and a lower bound of secure outage probability (SOPL) for independent and non-identically distributed channel coefficients without parameter constraints. We also provide a closed-form expression for the probability of SPSC when the μ parameter is assumed to take positive integer values. Monte-Carlo simulations are performed to verify the derived results. The versatility of the κ-μ fading model means that the results presented in this paper can be used to determine the probability of SPSC and SOPL for a large number of other fading scenarios, such as Rayleigh, Rice (Nakagamin), Nakagami-m, One-Sided Gaussian, and mixtures of these common fading models. In addition, due to the duality of the analysis of secrecy capacity and co-channel interference (CCI), the results presented here will have immediate applicability in the analysis of outage probability in wireless systems affected by CCI and background noise (BN). To demonstrate the efficacy of the novel formulations proposed here, we use the derived equations to provide a useful insight into the probability of SPSC and SOPL for a range of emerging wireless applications, such as cellular device-to-device, peer-to-peer, vehicle-to-vehicle, and body centric communications using data obtained from real channel measurements.
Resumo:
Network security monitoring remains a challenge. As global networks scale up, in terms of traffic, volume and speed, effective attribution of cyber attacks is increasingly difficult. The problem is compounded by a combination of other factors, including the architecture of the Internet, multi-stage attacks and increasing volumes of nonproductive traffic. This paper proposes to shift the focus of security monitoring from the source to the target. Simply put, resources devoted to detection and attribution should be redeployed to efficiently monitor for targeting and prevention of attacks. The effort of detection should aim to determine whether a node is under attack, and if so, effectively prevent the attack. This paper contributes by systematically reviewing the structural, operational and legal reasons underlying this argument, and presents empirical evidence to support a shift away from attribution to favour of a target-centric monitoring approach. A carefully deployed set of experiments are presented and a detailed analysis of the results is achieved.
Resumo:
App collusion refers to two or more apps working together to achieve a malicious goal that they otherwise would not be able to achieve individually. The permissions based security model (PBSM) for Android does not address this threat, as it is rather limited to mitigating risks due to individual apps. This paper presents a technique for assessing the threat of collusion for apps, which is a first step towards quantifying collusion risk, and allows us to narrow down to candidate apps for collusion, which is critical given the high volume of Android apps available. We present our empirical analysis using a classified corpus of over 29000 Android apps provided by Intel Security.