87 resultados para Tauler, Johannes, ca. 1300-1361.
Resumo:
1. Isolated sheep urethral cells were studied using the perforated patch clamp technique (T = 37 degrees C). Depolarizing steps ranging from -40 to -10 mV evoked an inward current that peaked within 10 ms and a slower inward current. Stepping back to the holding potential of -80 mV evoked large inward tail currents. All three currents were abolished by nifedipine (1 microM). Substitution of external Ca2+ with Ba2+ resulted in potentiation of the fast inward current and blockade of the slow current and tails. 2. Changing the chloride equilibrium potential (ECl) from 0 to +27 mV shifted the reversal potential of the tail currents from 1 +/- 1 to 27 +/- 1 mV (number of cells, n = 5). Chloride channel blockers, niflumic acid (10 microM) and anthracene-9-carboxylic acid (9AC, 1 mM), reduced the slow current and tails suggesting that these were Ca(2+)-activated Cl- currents, ICl(Ca). 4. Caffeine (10 mM) induced currents that reversed at ECl and were blocked by niflumic acid (10 microM). 5. In current clamp mode, some cells developed spontaneous transient depolarizations (STDs) and action potentials. Short exposure to nifedipine blocked the action potentials and unmasked STDs. In contrast, 9AC and niflumic acid reduced the amplitude of the STDs and blocked the action potentials. 6. In conclusion, these cells have both L-type ICa and ICl(Ca). The former appears to be responsible for the upstroke of the action potential, while the latter may act as a pacemaker current.
Resumo:
TRPM8 represents an ion channel activated by cold temperatures and cooling agents, such as menthol, that underlies the cold-induced excitation of sensory neurons. Interestingly, the only human tissue outside the peripheral nervous system, in which the expression of TRPM8 transcripts has been detected at high levels, is the prostate, a tissue not exposed to any essential temperature variations. Here we show that the TRPM8 cloned from human prostate and heterologously expressed in HEK-293 cells is regulated by the Ca(2+)-independent phospholipase A(2) (iPLA(2)) signaling pathway with its end products, lysophospholipids (LPLs), acting as its endogenous ligands. LPLs induce prominent prolongation of TRPM8 channel openings that are hardly detectable with other stimuli (e.g. cold, menthol, and depolarization) and that account for more than 90% of the total channel open time. Down-regulation of iPLA(2) resulted in a strong inhibition of TRPM8-mediated functional responses and abolished channel activation. The action of LPLs on TRPM8 channels involved either changes in the local lipid bilayer tension or interaction with the critical determinant(s) in the transmembrane channel core. Based on this, we propose a novel concept of TRPM8 regulation with the involvement of iPLA(2) stimulation. This mechanism employs chemical rather than physical (temperature change) signaling and thus may be the main regulator of TRPM8 activation in organs not exposed to any essential temperature variations, as in the prostate gland.
Resumo:
Collision strengths for transitions among the energetically lowest 46 fine-structure levels belonging to the (1s(2)) 2s(2)2p(2), 2s2p(3), 2p(4), and 2s(2)2p3l configurations of Ca XV are computed, over a wide electron energy range below 300 Ryd, using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2003). Resonances in the threshold region have been resolved in a fine energy mesh, and excitation rates are determined over a wide electron temperature range below 10(7) K. The results are compared with those available in the literature, and the accuracy of the data is assessed.
Resumo:
Previous Call K observations of the B-type star HD 83206 have revealed putative high-velocity interstellar clouds (HVCs) at Local Standard of Rest (LSR) velocities of -80 and -110 km s(- 1). Similar results were also found for the sightline towards HD135485. In this article, we show that these absorption lines are in fact due tr, stellar SII features. As the Call K absorption line in B-type stars is often used to assess the presence and distance of HVCs. we also present a very high quality spectrum of HD 83206 in the Ca II K region (similar to+/-4 Angstrom or +/-300 km s(-1)), so that in the future confusion between stellar lines and HVC features may be avoided.
Resumo:
We describe medium-resolution spectroscopic observations taken with the ESO Multi-Mode Instrument (EMMI) in the CaII K line (lambda air = 3933.661 angstrom) towards 7 QSOs located in the line-of-sight to the Magellanic Bridge. At a spectral resolution R =lambda/Delta lambda = 6000, five of the sightlines have a signal-to-noise ( S/N) ratio of similar to 20 or higher. Definite Ca absorption due to Bridge material is detected towards 3 objects, with probable detection towards two other sightlines. Gas-phase CaII K Bridge and Milky Way abundances or lower limits for the all sightlines are estimated by the use of Parkes 21-cm H. emission line data. These data only have a spatial resolution of 14 arcmin compared with the optical observations which have milli-arcsecond resolution. With this caveat, for the three objects with sound CaII K detections, we find that the ionic abundance of CaII K relative to HI, A = log( N( CaK)/ N( HI)) for low- velocity Galactic gas ranges from - 8.3 to - 8.8 dex, with HI column densities varying from 3- 6 x 10(20) cm(-2). For Magellanic Bridge gas, the values of A are similar to 0.5 dex higher, ranging from similar to- 7.8 to - 8.2 dex, with N( HI) = 1- 5 x 1020 cm(-2). Higher values of A correspond to lower values of N( HI), although numbers are small. For the sightline towards B 0251 - 675, the Bridge gas has two different velocities, and in only one of these is CaII tentatively detected, perhaps indicating gas of a different origin or present-day characteristics ( such as dust content), although this conclusion is uncertain and there is the possibility that one of the components could be related to the Magellanic Stream. Higher signal-to-noise CaII K data and higher resolution H. data are required to determine whether A changes with N( HI) over the Bridge and if the implied difference in the metalicity of the two Bridge components towards B 0251-675 is real.
An Exploratory Study of Annuality in the UK Public Sector: plus ca change, plus c'est la meme chose?
Resumo:
Spontaneous Ca(2+)-sparks were imaged using confocal line scans of fluo-4 loaded myocytes in retinal arterioles. Tetracaine produced concentration-dependent decreases in spark frequency, and modified the spatiotemporal characteristics of residual sparks. Tetracaine (10 microM) reduced the rate of rise but prolonged the average rise time so that average spark amplitude was unaltered. The mean half-time of spark decay was also unaffected, suggesting that spark termination, although delayed, remained well synchronized. Sparks spread transversely across the myocytes in these vessels, and the speed of spread within individual sparks was slowed by approximately 60% in 10 microM tetracaine, as expected if the spark was propagated across the cell but the average P(o) for RyRs was reduced. Staining of isolated vessels with BODIPY-ryanodine and di-4-ANEPPS showed that RyRs were located both peripherally, adjacent to the plasma membrane, and in transverse extensions of the SR from one side of the cell to the other. Immuno-labelling of retinal flat mounts demonstrated the presence RyR(2) in arteriole smooth muscle but not RyR(1). We conclude that Ca(2+)-sparks in smooth muscle can result from sequential activation of RyRs distributed over an area of several microm(2), rather than from tightly clustered channels as in striated muscle.
Resumo:
Full-length transient receptor potential (TRP) cation channel TRPC4alpha and shorter TRPC4beta lacking 84 amino acids in the cytosolic C terminus are expressed in smooth muscle and endothelial cells where they regulate membrane potential and Ca(2+) influx. In common with other "classical" TRPCs, TRPC4 is activated by G(q)/phospholipase C-coupled receptors, but the underlying mechanism remains elusive. Little is also known about any isoform-specific channel regulation. Here we show that TRPC4alpha but not TRPC4beta was strongly inhibited by intracellularly applied phosphatidylinositol 4,5-bisphosphate (PIP(2)). In contrast, several other phosphoinositides (PI), including PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), had no effect or even potentiated TRPC4alpha indicating that PIP(2) inhibits TRPC4alpha in a highly selective manner. We show that PIP(2) binds to the C terminus of TRPC4alpha but not that of TRPC4beta in vitro. Its inhibitory action was dependent on the association of TRPC4alpha with actin cytoskeleton as it was prevented by cytochalasin D treatment or by the deletion of the C-terminal PDZ-binding motif (Thr-Thr-Arg-Leu) that links TRPC4 to F-actin through the sodium-hydrogen exchanger regulatory factor and ezrin. PIP(2) breakdown appears to be a required step in TRPC4alpha channel activation as PIP(2) depletion alone was insufficient for channel opening, which additionally required Ca(2+) and pertussis toxin-sensitive G(i/o) proteins. Thus, TRPC4 channels integrate a variety of G-protein-dependent stimuli, including a PIP(2)/cytoskeleton dependence reminiscent of the TRPC4-like muscarinic agonist-activated cation channels in ileal myocytes.
Resumo:
Acetylcholine released from parasympathetic excitatory nerves activates contraction in detrusor smooth muscle. Immunohistochemical labeling of guinea pig detrusor with anti-c-Kit and anti-VAChT demonstrated a close structural relationship between interstitial cells of Cajal (ICC) and cholinergic nerves. The ability of guinea pig bladder detrusor ICC to respond to the acetylcholine analog, carbachol, was investigated in enzymatically dissociated cells, loaded with the Ca(2+) indicator fluo 4AM. ICC fired Ca(2+) transients in response to stimulation by carbachol (1/10 microM). Their pharmacology was consistent with carbachol-induced contractions in strips of detrusor which were inhibited by 4-DAMP (1 microM), an M(3) receptor antagonist, but not by the M(2) receptor antagonist methoctramine (1 microM). The source of Ca(2+) underlying the carbachol transients in isolated ICC was investigated using agents to interfere with influx or release from intracellular stores. Nifedipine (1 microM) or Ni(2+) (30-100 microM) to block Ca(2+) channels or the removal of external Ca(2+) reduced the amplitude of the carbachol transients. Application of ryanodine (30 microM) or tetracaine (100 microM) abolished the transients. The phospholipase C inhibitor, U-73122 (2.5 microM), significantly reduced the responses. 2-Aminoethoxydiethylborate (30 microM) caused a significant reduction and Xestospongin C (1 microM) was more effective, almost abolishing the responses. Intact in situ preparations of guinea pig bladder loaded with a Ca(2+) indicator showed distinctively different patterns of spontaneous Ca(2+) events in smooth muscle cells and ICC. Both cell types responded to carbachol by an increase in frequency of these events. In conclusion, guinea pig bladder detrusor ICC, both as isolated cells and within whole tissue preparations, respond to cholinergic stimulation by firing Ca(2+) transients. PMID: 18171995 [PubMed - indexed for MEDLINE]
Resumo:
Rabbit urethral smooth muscle cells were studied at 37 degrees C by using the amphotericin B perforated-patch configuration of the patch-clamp technique, using Cs(+)-rich pipette solutions. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca(2+) currents, were recorded. Fitting steady-state inactivation curves for the L current with a Boltzmann equation yielded a V(1/2) of -41 +/- 3 mV. In contrast, the T current inactivated with a V(1/2) of -76 +/- 2 mV. The L currents were reduced by nifedipine (IC(50) = 225 +/- 84 nM), Ni(2+) (IC(50) = 324 +/- 74 microM), and mibefradil (IC(50) = 2.6 +/- 1.1 microM) but were enhanced when external Ca(2+) was substituted with Ba(2+). The T current was little affected by nifedipine at concentrations
Resumo:
Nitric oxide generates slow electrical oscillations (SEOs) in cells near the myenteric edge of the circular muscle layer, which resemble slow waves generated by interstitial cells of Cajal (ICCs) at the submucosal edge of this muscle. The properties of SEOs were studied to determine whether these events are similar to slow waves. Rapid frequency membrane potential oscillations (MPOs; 16 +/- 1 cycles/min and 9.6 +/- 0.2 mV) were recorded from control muscles near the myenteric edge. Sodium nitroprusside (0.3 microM) reduced MPOs and initiated SEOs (1.3 +/- 0.3 cycles/min and 13.4 +/- 1.4 mV amplitude). SEOs were abolished by the guanylate cyclase inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxaline-1-one (10 microM). MPOs were abolished by nifedipine (1 microM), whereas SEO frequency increased and the amount of depolarization decreased. BAY K 8644 (1 microM) prolonged SEOs and reduced their frequency. SEOs were abolished by Ni(2+) (0.5 mM), low Ca(2+) solution (0.1 mM Ca(2+)), cyclopiazonic acid (10 microM), and the mitochondrial uncouplers antimycin (10 microM) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (1 microM). Oligomycin (10 microM) was without effect. These effects are similar to those described for colonic slow waves. Our results suggest that nitric oxide-induced SEOs are similar in mechanism to slow waves, an activity not previously thought to be generated by myenteric pacemakers.
Resumo:
The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.