158 resultados para TITANIUM ELASTIC NAILS
Resumo:
A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Dielectronic recombination (DR) has been studied in highly charged He-like Ti ions using an electron beam ion trap. X-rays emitted from radiative recombination (RR) and DR were observed as the electron beam energy was scanned through the resonances. Differential DR resonant strengths were determined by normalizing the DR x-ray intensity to the RR intensity using theoretical RR cross sections. KLn (2 less than or equal to n less than or equal to 5) resonant strengths were determined for He-like Ti ions. The differential resonant strengths were calibrated without reference to any theoretical DR calculations while the electron energy scale was derived with reference to the well-known energy for ionization of the He-like and H-like ions from the ground state. Calibration in this way facilitates a more exacting comparison between theory and experiment than has been reported previously. To facilitate this comparison, total and differential theoretical resonance strengths were calculated. These calculations were found to be in good agreement with the measured results.
Resumo:
The measured angular differential cross section (DCS) for the elastic scattering of electrons from Ar+(3s2 3p5 2P) at the collision energy of 16 eV is presented. By solving the Hartree-Fock equations, we calculate the corresponding theoretical DCS including the coupling between the orbital angular momenta and spin of the incident electron and those of the target ion and also relaxation effects. Since the collision energy is above one inelastic threshold for the transition 3s2 3p5 2P–3s 3p6 2S, we consider the effects on the DCS of inelastic absorption processes and elastic resonances. The measurements deviate significantly from the Rutherford cross section over the full angular range observed, especially in the region of a deep minimum centered at approximately 75°. Our theory and an uncoupled, unrelaxed method using a local, spherically symmetric potential by Manson [Phys. Rev. 182, 97 (1969)] both reproduce the overall shape of the measured DCS, although the coupled Hartree-Fock approach describes the depth of the minimum more accurately. The minimum is shallower in the present theory owing to our lower average value for the d-wave non-Coulomb phase shift s2, which is due to the high sensitivity of s2 to the different scattering potentials used in the two models. The present measurements and calculations therefore show the importance of including coupling and relaxation effects when accurately modeling electron-ion collisions. The phase shifts obtained by fitting to the measurements are compared with the values of Manson and the present method.
Resumo:
A crossed-beams energy-loss spectrometer has been used to investigate angular distributions for electron scattering from Ar2+ and Xe2+ ions, at a collision energy of 16 eV. For Ar2+ the measurements are compared with the predictions of a partial waves calculation based on a semi-empirical potential, where it is shown that the interference term governs the position of the observed minimum in the angular distribution.
Resumo:
A crossed-beams energy-loss spectrometer has been used to investigate angular distributions for electron scattering from Ar2+ and Ar3+ ions, at a collision energy of 16 eV. Results are compared with the predictions of a partial waves calculation based on a semi-empirical potential, and with the classical Rutherford formula.