54 resultados para TAYLOR VALLEY


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a model is presented that describes the pressure drop of gas-liquid Taylor flow in round capillaries with a channel diameter typically less than 1 mm. The analysis of Bretherton (J Fluid Mech 10:166-188, 1961) for the pressure drop over a single gas bubble for vanishing liquid film thickness is extended to include a non-negligible liquid film thickness using the analysis of Aussillous and Qu,r, (Phys Fluids 12(10):2367-2371, 2000). This result is combined with the Hagen-Poiseuille equation for liquid flow using a mass balance-based Taylor flow model previously developed by the authors (Warnier et al. in Chem Eng J 135S:S153-S158, 2007). The model presented in this paper includes the effect of the liquid slug length on the pressure drop similar to the model of Kreutzer et al. (AIChE J 51(9):2428-2440, 2005). Additionally, the gas bubble velocity is taken into account, thereby increasing the accuracy of the pressure drop predictions compared to those of the model of Kreutzer et al. Experimental data were obtained for nitrogen-water Taylor flow in a round glass channel with an inner diameter of 250 mu m. The capillary number Ca (gl) varied between 2.3 x 10(-3) and 8.8 x 10(-3) and the Reynolds number Re (gl) varied between 41 and 159. The presented model describes the experimental results with an accuracy of +/- 4% of the measured values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Rift Valley fever (RVF) is an emerging vector-borne zoonotic disease that represents a threat to human health, animal health, and livestock production, particularly in Africa. The epidemiology of RVF is not well understood, so that forecasting RVF outbreaks and carrying out efficient and timely control measures remains a challenge. Various epidemiological modeling tools have been used to increase knowledge on RVF epidemiology and to inform disease management policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Rift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). RVF was first described in South Africa in 1950-1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008-11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission. Methodology/Principal Findings: A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011) of varying duration, location and size were reported. About 70% of cases (n = 471) occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km) was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km). Conclusions/Significance: The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread. © 2012 Métras et al.