286 resultados para Sustained release
Resumo:
Silicone elastomer systems have previously been shown to offer potential for the sustained release of protein therapeutics. However, the general requirement for the incorporation of large amounts of release enhancing solid excipients to achieve therapeutically effective release rates from these otherwise hydrophobic polymer systems can detrimentally affect the viscosity of the precure silicone elastomer mixture and its curing characteristics. The increase in viscosity necessitates the use of higher operating pressures in manufacture, resulting in higher shear stresses that are often detrimental to the structural integrity of the incorporated protein. The addition of liquid silicones increases the initial tan delta value and the tan delta values in the early stages of curing by increasing the liquid character (G '') of the silicone elastomer system and reducing its elastic character (G'), thereby reducing the shear stress placed on the formulation during manufacture and minimizing the potential for protein degradation. However, SEM analysis has demonstrated that if the liquid character of the silicone elastomer is too high, the formulation will be unable to fill the mold during manufacture. This study demonstrates that incorporation of liquid hydroxy-terminated polydimethylsiloxanes into addition-cure silicone elastomer-covered rod formulations can both effectively lower the viscosity of the precured silicone elastomer and enhance the release rate of the model therapeutic protein bovine serum albumin. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Resumo:
Background: Small molecule inhibitors of the zinc finger domain (ZFI) in the nucleocapsid protein (NCp7) of HIV-1 are potent inhibitors of HIV and SIV
replication and may have utility as topical products to prevent infection. Furthermore, intravaginal rings (IVRs) were developed as coitally-independent,
sustained release devices which could be used for administration of HIV microbicides. The aims of these studies were to demonstrate that IVRs sized for
macaques are practical and compatible with the current generation of thioester-based NCp7 inhibitors.
Methods: Non-medicated silicone elastomer vaginal rings of various sizes thought to be applicable for macaques were prepared and tested for vaginal fit in Pigtailed and Chinese Rhesus macaques. Macaques were monitored for 8 weeks for mucosal disruption by colposcopy and proinflammatory cytokine markers in cervical vaginal lavages (CVL) using Luminex bead-based technology. Three different ZFIs (compounds 52, 89 and 122, each derived from an N-substituted S-acyl-2-mercaptobenzamide thioester scaffold) were loaded at 50 mg into an optimal matrix-type ring design. In vitro continuous release studies were then conducted over 28 days and analyzed by HPLC. Rate of release was determined by linear regression analysis.
Results: Qualitative evaluation at the time of ring insertion suggested that the 25 mm ring provided optimal fit in both macaque species. All rings remained in
place during the study period (2 to 4 weeks), and the animals did not attempt to remove the rings. No tissue irritation was observed, and no signs of physical
discomfort were noted. Also, no significant induction of cervicovaginal proinflammatory markers was observed during the 8-week period during and following ring insertion. One Pigtailed macaque showed elevated IL-8 levels in the CVL during the period when the ring was in place; however, these levels were comparable to those observed in two control macaques. In vitro release of the ZFIs peaked at day 1 and then continually declined to near steady-state rates between 20-30 mcg/day. The percent release after 14 days was 2.9, 2.0 and 0.9 for ZFI 89, 52 and 122, respectively.
Conclusions: IVRs of 25mm diameter, determined to be the optimal size for macaques, were well tolerated and did not induce inflammation. Release of all ZFI compounds followed t 0.5 kinetics. These findings suggest that efficacy testing in primate models is warranted to fully evaluate the potential to prevent
transmission.
Resumo:
The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.
Resumo:
Objectives: To develop and manufacture both immediate and sustained release vaginal tablets containing the anticancer drug disulfiram, which has the potential to be used as a non-invasive treatment for cervical cancer.
Methods: Disulfiram-loaded vaginal tablets were manufactured at pilot scale using the direct compression method. These tablets were tested in accordance with the European Pharmacopeia testing of solid dosage form guidelines. They were also tested using a biorelevant dissolution method as well as a dual-chambered release model designed to better mimic the dynamic nature of the vaginal vault.
Key findings: We have developed both immediate and sustained release vaginal tablets, which when manufactured at pilot scale are within the limits set by the European Pharmacopeia for the testing of solid dosage forms. Furthermore, these tablets are capable of releasing disulfiram in vitro using the dual-chambered release model at levels 25 000 times and 35 000 times greater than its IC50 concentration for the HeLa cervical cancer cell line.
Conclusions: The successful pilot manufacture and testing of both the immediate and sustained release disulfiram-loaded vaginal tablets warrant further investigation, using an in-vivo model, to assess their potential for use as a non-invasive treatment option for cervical cancer.
Resumo:
The combination of metformin hydrochloride (MTF) and glipizide (GLZ) is second-line medication for diabetes mellitus type 2 (DMT2). In the present study, elementary osmotic pump(EOP)tablet is designed to deliver the combination of MTF and GLZ in a sustained and synchronized manner. By analyzing different variables of the formulation, sodium hydrogen carbonate is introduced as pH modifier to improve the release of GLZ, while ethyl cellulose acts as release retardant to reduce the burst release phase of MTF. A two factor, three level face-centered central composite design (FCCD) is applied to investigate the impact of different factors on drug release profile. Compared with conventional tablets, the elementary osmotic pump (EOP) tablet demonstrates a controlled release behavior with relative bioavailability of 99.2% for MTF and 99.3% for GLZ. Data also shows EOP tablet is able to release MTF and GLZ in a synchronized and sustained manner both in vitro and in vivo
Resumo:
The density of reactive carboxyl groups on the surface of poly(lactide-co-glycolide) (PLGA) nanoparticles (NP) was modulated using a combination of high-molecular weight (MW) encapped and low MW non-encapped PLGA. Carboxyl groups were activated using carbodiimide chemistry and conjugated to bovine serum albumin and a model polyclonal antibody. Activation of carboxyl,groups in solution-phase PLGA prior to NP formation was compared with a postformation activation of peripheral carboxyl groups on intact NP. Activation before or after NP formation did not influence conjugation efficiency to NP prepared using 100% of the low-MW PLGA. The effect of steric stabilization using poly(vinyl alcohol) reduced conjugation of a polyclonal antibody from 62 mu g/(mg NP) to 32 mu g/(mg NP), but enhanced particulate stability. Increasing the amount of a high-MW PLGA also reduced Conjugation, with the activation post-formation still superior to the preformation approach. Drug release studies showed that high proportions of high-MW PLGA in the NP produced a longer sustained release profile of a model drug (celecoxib). It can be concluded that activating intact PLGA NP is superior to activating component parts prior to NP formation. Also, high MW PLGA could be used to prolong drug release, but at the expense of conjugation efficiency on to the NP surface. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 873-884, 2008
Resumo:
BACKGROUND: Vaginal ring devices are being developed to provide sustained release of HIV microbicides. To date, only limited pharmacokinetic data is available from animal or human studies. Here we report the effect of Depo-Provera (DP) pre- treatment, commonly used to thin the vaginal epithelium in challenge experiments, on the pharmacokinetic profile of CMPD167 (a small molecule CCR5 co-receptor antagonist) in rhesus macaques following vaginal ring administration.
METHODS: A single 400mg CMPD167 silicone elastomer vaginal ring was inserted into each of twelve female rhesus macaques. Six macaques were treated with (DP) 30 days before ring placement; the other six macaques were untreated. Blood, vaginal fluid and vaginal biopsies were collected prior to and at various times during 28 days of ring placement and assayed for CMPD167 levels by HPLC. Rings were assayed for residual CMPD167 at the end of the study and the calculated amount of CMPD167 released in vivo compared with in vitro release data.
RESULTS: Vaginal fluid, plasma and tissue levels of CMPD167 were detectable throughout ring placement. Significant differences were observed in mean daily vaginal fluid levels between the DP-treated (16–56 mcg/mL) and untreated groups (48–181 mcg/mL). Plasma CMPD167 levels were significantly higher peaking at 4 ng/mL and maintaining levels of 1–2 nM throughout the 14 days of testing in animals pre-treated with DP compared to non DP-treated macaques (<1 ng/mL maintained). Tissue levels were varied between 2–10 g/mL CMPD167 with no significant difference between the DP-treated and untreated macaques.
CONCLUSIONS: The study demonstrates that clinically relevant, and possibly protective doses of CMPD167 are released in the vaginal vault of rhesus macaques from vaginal rings through 28 days duration. DP is known to induce vaginal epithelial thinning and lower vaginal fluid levels, which accounts for the increased plasma levels of CMPD167. In contrast, macaques not treated with DP had minimal absorption into plasma compartments and significantly higher levels of CMPD167 in the vagina, similar to those previously shown to be protective against vaginal challenge.
Resumo:
Silicone elastomer systems have been shown to offer potential for the fabrication of medical devices and sustained release drug delivery devices comprising low molecular weight drugs and protein therapeutics. For drug delivery systems in particular, there is often no clear rationale for selection of the silicone elastomer grade, particularly in respect of optimizing the manufacturing conditions to ensure thermal stability of the active agent and short cycle times. In this study, the cure characteristics of a range of addition-cure and condensation-cure, low-consistency, implant-grade silicone elastomers, either as supplied or loaded with the model protein bovine serum albumin (BSA) and the model hydrophilic excipient glycine, were investigated using oscillatory rheology with a view to better understanding the isothermal cure characteristics. The results demonstrate the influence of elastomer type, cure temperature, protein loading, and glycine loading on isothermal cure properties. By measuring the cure time required to achieve tan delta values representative of early and late-stage cure conditions, a ratio t(1)/t(2) was defined that allowed the cure characteristics of the various systems to be compared. Sustained in vitro release of BSA from glycine-loaded silicone elastomer covered rod devices was also demonstrated over 14 days. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 2320-2327, 2010
Resumo:
he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.
Resumo:
BACKGROUND: On the basis of preclinical studies of NC-6004, a cisplatin-incorporated micellar formulation, we hypothesised that NC-6004 could show lower toxicity than cisplatin and show greater anti-tumour activity in phase I study. METHODS: A total of 17 patients were recruited in a range of advanced solid tumour types. NC-6004 was administered intravenously (i.v.) every 3 weeks. The dose escalation started at 10?mg?m(-2) and was increased up to 120?mg?m(-2) according to the accelerated titration method and modified Fibonacci method. RESULTS: One dose-limiting toxicity (DLT) occurred in a patient who was given 90?mg?m(-2) of NC-6004, otherwise any significant cisplatin-related toxicity was not observed or generally mild toxicity was observed. Despite the implementation of post-hydration and pre-medication regimen, renal impairment and hypersensitivity reactions still developed at 120?mg?m(-2), which led to the conclusion that the maximum tolerated dose was 120?mg?m(-2), and the recommended dose was 90?mg?m(-2), although DLT was not defined as per protocol. Stable disease was observed in seven patients. The maximum concentration and area under the concentration-time curve of ultrafilterable platinum at 120?mg?m(-2) NC-6004 were 34-fold smaller and 8.5-fold larger, respectively, than those for cisplatin. CONCLUSION: The delayed and sustained release of cisplatin after i.v. administration contributes to the low toxicity of NC-6004.
Resumo:
Vaccine-mediated prevention of primary HIV-1 infection at the heterosexual mucosal portal of entry may be facilitated by highly optimised formulations or drug delivery devices for intravaginal (i.vag) immunization. Previously we described hydroxyethylcellulose (HEC)-based rheologically structured gel vehicles (RSVs) for vaginal immunization of an HIV-1 vaccine candidate, a soluble recombinant trimeric HIV-1 clade-C envelope glycoprotein designated CN54gp140. Here we investigated the efficacy of lyophilized solid dosage formulations (LSDFs) for prolonging antigen stability and as i.vag delivery modalities. LSDFs were designed and developed that upon i.vag administration they would reconstitute with the imbibing of vaginal fluid to mucoadhesive, site-retentive semi-solids. Mice were immunized with lyophilized equivalents of (i) RSVs, (ii) modified versions of the RSVs more suited to lyophilization (sodium carboxymethyl cellulose (NaCMC)-based gels) and (iii) Carbopol® gel, all containing CN54gp140. NaCMC-based LSDFs provided significantly enhanced antigen stability compared to aqueous-based RSVs. Rheological analysis indicated the NaCMC-based LSDFs would offer enhanced vaginal retention in woman compared to more conventional vaginal gel formulations. All LSDFs were well tolerated in the mouse model. Following i.vag administration, all LSDFs boosted systemic CN54gp140-specific antibody responses in sub-cutaneously primed mice. Induction of CN54gp140-specific antibody responses in the female genital tract was evident. Of all the LSDFs the fastest releasing which was lyophilized Carbopol® gel elicited immune responses comparable to buffer instillation of antigen suggesting that rather than slower sustained release, initial high burst release from the LSDFs may suffice. The boosting of specific immune responses upon i.vag administration indicates that LSDFs are viable mucosal vaccine delivery modalities promoting antigen stability and facilitating intimate exposure of CN54gp140 to the mucosal-associated lymphoid tissue of the female genital tract.
Resumo:
Micro-and nanoparticles prepared front the biodegradable and biocompatible polymers poly(lactide-co-glycolide) (PLGA) and polymetylmethacrylate (PMMA) have been successfully used as immunopotentiating antigen delivery systems. In our study, this approach was used to improve polyclonal antibody production to clenbuterol (CBL), a model hapten. PLGA and PMMA nanoparticles were loaded with either CBL alone or with a clenbuterol-transferrin conjugate (CBL-Tfn) and administered subcutaneously to mice. PLGA nano-particles were administered with or without the saponin adjuvant Quil A. The anti-CBL titres present in experimental sera were determined by an enzyme immunoassay (ELISA). CBL-Tfn-loaded PLGA nanoparticles co-administered with Quil A had obvious advantages immmunologically over the currently used method of raising antibodies to CBL (the positive control). The combined adjuvanticity of Quil A and PLGA nanoparticles resulted in a positive response in all four of the mice tested and in higher antibody titles than were seen in the positive control group. Furthermore, the sustained release of immunogen from the nanoparticles permitted a reduction in immunizing frequency over the 15-week study period.
Resumo:
Following the successful development of long-acting steroid-releasing vaginal ring devices for treatment of menopausal symptoms and contraception, there is now considerable interest in applying similar devices to the controlled release of microbicides against HIV. In this review article, the vaginal ring concept is first considered within the wider context of the early advances in controlled release technology, before describing the various types of ring device available today. The remainder of the article highlights the key developments in HIV microbicide-releasing vaginal rings, with a particular focus on the dapivirine ring that is presently in late-stage clinical testing. © 2012 Malcolm et al, publisher and licensee Dove Medical Press Ltd.
Resumo:
The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the C{double bond, long}O peak from 1708 to 1731 cm, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the M of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Vaginal rings (VRs) are flexible, torus-shaped, polymeric devices designed to sustain delivery of pharmaceutical drugs to the vagina for clinical benefit. Following first report in a 1970 patent application, several steroid-releasing VR products have since been marketed for use in hormone replacement therapy and contraception. Since 2002, there has been growing interest in the use of VR technology for delivery of drugs that can reduce the risk of sexual acquisition of human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). Although no vaginally-administered product has yet been approved for HIV reduction/prevention, extensive research efforts are continuing and a number of VR devices offering sustained release of so-called ‘HIV microbicide’ compounds are currently being evaluated in late-stage clinical studies. This review article provides an overview of the published scientific literature within this important field of research, focusing primarily on articles published within peer-reviewed journal publications. Many important aspects of microbicide-releasing VR technology are discussed, with a particular emphasis on the technological, manufacturing and clinical challenges that have emerged in recent years.