48 resultados para Superconducting tape
Resumo:
commissioned by Ballet Rambert for the ballet 'Raw', choreographer Mary Evelyn
Resumo:
commissioned by Adrian Jack for ICA Music series, ICA. London
Resumo:
honourable mention, Bourges Festival France 1983
choreographed by Richard Alston for Ballet Rambert 1984
revived by Scottish Ballet (20th Century Classics) Festival Theatre Edinburgh 25/09/04
Resumo:
commissioned by Cwmni Dawns Gwylan with funds from the Welsh Arts Council, for Chapter Arts Centre, Cardiff. Choreographer Lucy Fawcett. (Nick Parkin, percussion)
Resumo:
London premiere performance as part of the Society for the Promotion of New Music Festival, Morley College/St John's Smith Square, London 10-13 September 1981. World premiere at University of East Anglia 2 March 1981. Second performance Nottingham University 9 June 1981.
Resumo:
The ability to directly utilize hydrocarbons and other renewable liquid fuels is one of the most important issues affecting the large scale deployment of solid oxide fuel cells (SOFCs). Herein we designed La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode (FGA) supported SOFCs, prepared with a co-tape casting method and sintered using the field assisted sintering technique (FAST). Through SEM observations, it was confirmed that the FGA structure was achieved and well maintained after the FAST process. Distortion and delamination which usually results after conventional sintering was successfully avoided. The La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs showed a maximum power density of 600mWcm-2 at 750°C, and was stable for 70h in CH4. No carbon deposition was detected using Raman spectroscopy. These results confirm the potential coke resistance of La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs.
Resumo:
A 10 mol%Sc2O3, 1 mol%CeO2 stabilized-ZrO2 (SSZ) powder was successfully prepared using the sol-gel method. Subsequent SSZ electrolyte pellets were prepared by tape casting technique and sintered at 1400 °C, 1450 °C, 1500 °C, 1550 °C and 1600 °C. These were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). SSZ showed a pure cubic phase after sintering, the grain size of SSZ increased with the increase of sintering temperature. The SSZ sintered at 1550 °C showed the highest ion conductivity. The maximum power densities of Ni-SSZ/SSZ/La0.8Sr0.2MnO3-δ (LSM)-SSZ single cells sintered at 1550 °C were 0.18, 0.36, 0.51 and 0.72 W cm-2 at 650, 700, 750 and 800 °C, respectively. The polarization resistance (Rp) of the single cell attained 0.201 Ω cm2 at 800 °C.
Resumo:
The purpose of this article is to examine children’s attitudes regarding the right to work. The article is based on comments made by 245 15-year-old children on child employment and is supported by focus group interviews with 56 boys and 38 girls and tape-recorded interviews with 15 working pupils. One of most dominant themes to emerge from the data is children’s perception that they have a right to work. The article examines the legislation regarding child employment in Northern Ireland and the role of the state in determining the legislation. The author suggests that within this legislation, children are seen as vulnerable and in need of protection. Traditionally the protection of children in the workforce has been achieved by limiting the hours they can work and the occupations they can enter. Yet when children’s own views are taken into account, they move beyond the limits of protecting them through exclusion to suggesting frameworks whereby their protection may be achieved by empowering them within the labour market.
Resumo:
High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbor coupling is no longer valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how preengineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.
Resumo:
A key element in the architecture of a quantum-information processing network is a reliable physical interface between fields and qubits. We study a process of entanglement transfer engineering, where two remote qubits respectively interact with an entangled two-mode continuous-variable (CV) field. We quantify the entanglement induced in the qubit state at the expenses of the loss of entanglement in the CV system. We discuss the range of mixed entangled states which can be obtained with this setup. Furthermore, we suggest a protocol to determine the residual entangling power of the light fields inferring, thus, the entanglement left in the field modes which, after the interaction, are no longer in a Gaussian state. Two different setups are proposed: a cavity-QED system and an interface between superconducting qubits and field modes. We address in detail the practical difficulties inherent in these two proposals, showing that the latter is promising in many aspects.
Resumo:
We present two strategies to enhance the dynamical entanglement transfer from continuous-variable (CV) to finite-dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite-dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits resonantly coupled to the CV system are sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between the microscopic and macroscopic behaviors of composite finite-dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing us to probabilistically convert CV entanglement into "almost-perfect" Bell pairs of two qubits. Our proposals are suited for realizations in various experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.
Resumo:
An electron beam ion trap ( EBIT) has been designed and is currently under construction for use in atomic physics experiments at the Queen's University, Belfast. In contrast to traditional EBITs where pairs of superconducting magnets are used, a pair of permanent magnets will be used to compress the electron beam. The permanent magnets have been designed in conjunction with bespoke vacuum ports to give unprecedented access for photon detection. Furthermore, the bespoke vacuum ports facillitate a versatile, reconfigurable trap structure able to accommodate various in-situ detectors and in-line charged particle analysers. Although the machine will have somewhat lower specifications than many existing EBITs in terms of beam current density, it is hoped that the unique features will facilitate a number of hitherto impossible studies involving interactions between electrons and highly charged ions. In this article the new machine's design is outlined along with some suggestions of the type of process to be studied once the construction is completed.
Resumo:
An energy storage system (ESS) installed in a power system can effectively damp power system oscillations through controlling exchange of either active or reactive power between the ESS and power system. This paper investigates the robustness of damping control implemented by the ESS to the variations of power system operating conditions. It proposes a new analytical method based on the well-known equal-area criterion and small-signal stability analysis. By using the proposed method, it is concluded in the paper that damping control implemented by the ESS through controlling its active power exchange with the power system is robust to the changes of power system operating conditions. While if the ESS damping control is realized by controlling its reactive power exchange with the power system, effectiveness of damping control changes with variations of power system operating condition. In the paper, an example power system installed with a battery ESS (BESS) is presented. Simulation results confirm the analytical conclusions made in the paper about the robustness of ESS damping control. Laboratory experiment of a physical power system installed with a 35kJ/7kW SMES (Superconducting Magnetic Energy Storage) was carried out to evaluate theoretical study. Results are given in the paper, which demonstrate that effectiveness of SMES damping control realized through regulating active power is robust to changes of load conditions of the physical power system.
Resumo:
An electron-beam ion trap (EBIT) has been designed for atomic physics experiments at the Queen's University of Belfast. A pair of permanent magnets will be used to produce an axial magnetic field to compress an electron beam, whereas pairs of superconducting magnets have been used for traditional EBITs. The design of the new EBIT is detailed and possible experiments are explained to show the feasibility of the EBIT. (C) 2004 American Institute of Physics.
Resumo:
We propose a protocol for perfect quantum state transfer that is resilient to a broad class of realistic experimental imperfections, including noise sources that could be modeled either as independent Markovian baths or as certain forms of spatially correlated environments. We highlight interesting connections between the fidelity of state transfer and quantum stochastic resonance effects. The scheme is flexible enough to act as an effective entangling gate for the generation of genuine multipartite entanglement in a control-limited setting. Possible experimental implementations using superconducting qubits are also briefly discussed.