38 resultados para Sulphur-crested Cockatoo
Resumo:
The vegetation history of the Faroe Islands has been investigated in numerous studies all broadly showing that the early-Holocene vegetation of the islands largely consisted of fellfield with gravely and rocky soils formed under a continental climate which shifted to an oceanic climate around 10,000 cal yr BP when grasses, sedges and finally shrubs began to dominant the islands. Here we present data from three lake sediment cores and show a much more detailed history from geochemical and isotope data. These data show that the Faroe Islands were deglaciated by the end of Younger Dryas (11,700 10,300 cal yr BP), at this time relatively high sedimentation rates with high delta C-13 imply poor soil development. delta C-13, Ti and chi data reveal a much more stable and warm mid-Holocene until 7410 cal yr BP characterised by increasing vegetation cover and build up of organic soils towards the Holocene thermal maximum around 7400 cal yr BP. The final meltdown of the Laurentide ice sheet around 7000 cal yr BP appears to have impacted both ocean and atmospheric circulation towards colder conditions on the Faroe Islands. This is inferred by enhanced weathering and increased deposition of surplus sulphur (sea spray) and erosion in the highland lakes from about 7400 cal yr BP. From 4190 cal yr BP further cooling is believed to have occurred as a consequence for increased soil erosion due to freeze/thaw sequences related to oceanic and atmospheric variability. This cooling trend appears to have advanced further from 3000 cal yr BR A short period around 1800 cal yr BP appears as a short warm and wet phase in between a general cooling characterised by significant soil erosion lasting until 725 cal yr BP. Interestingly, increased soil erosion seems to have begun at 1360 cal yr BP, thus significantly before the arrival of the first settlers on the Faroe Island around 1150 cal yr BP, although additional erosion took place around 1200 cal yr BP possibly as a consequence of human activities. Hence it appears that if humans caused a change in the Faroe landscape in terms of erosion they in fact accelerated a process that had already started. Soil erosion was a dominant landscape factor during the Little Ice Age, but climate related triggers can hardly be distinguished from human activities. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We conducted multi-proxy geochemical analyses (including measurements of organic carbon, nitrogen and sulphur stable isotope composition, and carbonate carbon and oxygen isotope composition) on a 13.5 m sediment core from Lake Bliden, Denmark, which provide a record of shifting hydrological conditions for the past 6,700 years. The early part of the stratigraphic record (6,700-5,740 cal year BP) was wet, based on delta O-18(carb) and lithology, and corresponds to the Holocene Thermal Maximum. Shifts in primarily delta O-18(carb) indicate dry conditions prevailed from 5,740 to 2,800 cal year BP, although this was interrupted by very wet conditions from 5,300 to 5,150, 4,300 to 4,050 and 3,700 to 3,450 cal year BP. The timing of the latter two moist intervals is consistent with other Scandinavian paleoclimatic records. Dry conditions at Lake Bliden between 3,450 and 2,800 cal year BP is consistent with other paleolimnological records from southern Sweden but contrasts with records in central Sweden, possibly suggesting a more northerly trajectory of prevailing westerlies carrying moisture from the North Atlantic at this time. Overall, fluctuating moisture conditions at Lake Bliden appear to be strongly linked to changing sea surface temperatures in the Greenland, Iceland and Norwegian seas. After 2,800 cal year BP, sedimentology, magnetic susceptibility, delta C-13(ORG), delta C-13(carb) and delta O-18(carb) indicate a major reduction on water level, which caused the depositional setting at the coring site to shift from the profundal to littoral zone. The Roman Warm Period (2,200-1,500 cal year BP) appears dry based on enriched delta O-18(carb) values. Possible effects of human disturbance in the watershed after 820 cal year BP complicate attempts to interpret the stratigraphic record although tentative interpretation of the delta O-18(carb), magnetic susceptibility, delta C-13(ORG), delta C-13(carb) and delta O-18(carb) records suggest that the Medieval Warm Period was dry and the Little Ice Age was wet.
Resumo:
LL catalytic RNAs (ribozymes) require or are stimulated by divalent metal ions, but it has been difficult to separate the contribution of these metal ions to formation of the RNA tertiary structure1 from a more direct role in catalysis. The Tetrahymena ribozyme catalyses cleavage of exogenous RNA2,3 or DNA4,5 substrates with an absolute requirement for Mg2+ or Mn2+ (ref. 6). A DNA substrate, in which the bridging 3' oxygen atom at the cleavage site is replaced by sulphur, is cleaved by the ribozyme about 1,000 times more slowly than the corresponding unmodified DNA substrate when Mg2+ is present as the only divalent metal ion. But addition of Mn2+ or Zn2+ to the reaction relieves this negative effect, with the 3' S–P bond being cleaved nearly as fast as the 3' O–P bond. Considering that Mn2+ and Zn2+ coordinate sulphur more strongly than Mg2+ does7,8, these results indicate that the metal ion contributes directly to catalysis by coordination to the 3' oxygen atom in the transition state, presumably stabilizing the developing negative charge on the leaving group. We conclude that the Tetrahymena ribozyme is a metalloenzyme, with mechanistic similarities to several protein enzymes9–12.
Resumo:
Dithymidine-3'-S-phosphorothioate (d(TspT)) has been prepared from a 5'-O-monomethoxytritylthymidine-3'-S- phosphorothioamidite (7) by activation with 5-(p- nitrophenyl)tetrazole in the presence of 3'-O- acetylthymidine. The resulting dinucleoside phosphorothioite is readily oxidised to the corresponding 3'-S-phosphorothioate using either tetrabutylammonium (TBA) perlodate or TBA oxone and has been deprotected under standard conditions to yield d(TspT). This dithymidine phosphate analogue is comparatively resistant to hydrolysis by nuclease P1, but the P-S bond is readily cleaved by aqueous solutions of either iodine or silver nitrate. Dithymidine-3'-S-phosphorodithioate (d[Tsp(s)T] was prepared in an analogous fashion using sulphur to oxidise the intermediate dinucleoside phosphoro thiolte. Absolute stereochemistry has been assigned to the diastereoisomers of d by comparing their physical and chemical properties to those of the dinucleoside phosphorothioates.
Resumo:
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumsteller nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here, we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula (12 + log O/H = 8.61 +/- 0.13 dex) is similar to that in the background nebula (8.56 +/- 0.07), suggesting that the composition of the host cluster is around solar. However, we confirm that the circumsteller nebula is very rich in nitrogen, with an abundance of 8.91 +/- 0.15, compared to the background value of 7.47 +/- 0.18. A new analysis of the stellar spectrum With the FASTWIND model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models, they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The star's initial mass was around 50 M-circle dot which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.
Resumo:
Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques (micro-XANES, micro-X-ray fluorescence (micro-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As and localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.
Resumo:
We have developed a method to extract and separate phytochelatins (PCs)-metal(loid) complexes using parallel metal(loid)-specific (inductively coupled plasma-mass spectrometry) and organic-specific (electrospray ionization-mass spectrometry) detection systems-and use it here to ascertain the nature of arsenic (As)-PC complexes in plant extracts. This study is the first unequivocal report, to our knowledge, of PC complex coordination chemistry in plant extracts for any metal or metalloid ion. The As-tolerant grass Holcus lanatus and the As hyperaccumulator Pteris cretica were used as model plants. In an in vitro experiment using a mixture of reduced glutathione (GS), PC(2), and PC(3), As preferred the formation of the arsenite [As((III))]-PC(3) complex over GS-As((III))-PC(2), As((III))-(GS)(3), As((III))-PC(2), or As((III))-(PC(2))(2) (GS: glutathione bound to arsenic via sulphur of cysteine). In H. lanatus, the As((III))-PC(3) complex was the dominant complex, although reduced glutathione, PC(2), and PC(3) were found in the extract. P. cretica only synthesizes PC(2) and forms dominantly the GS-As((III))-PC(2) complex. This is the first evidence, to our knowledge, for the existence of mixed glutathione-PC-metal(loid) complexes in plant tissues or in vitro. In both plant species, As is dominantly in non-bound inorganic forms, with 13% being present in PC complexes for H. lanatus and 1% in P. cretica.
Resumo:
The band structure of the intercalation complex of LiTiS has been computed using a semi-empirical tight-binding method and this is compared with the results of a revised TiS calculation. The results obtained confirm that changes in the basic electrical characteristics of TiS, which occur when it is intercalated with lithium, can be attributed to a rigid-band filling of its lowest unoccupied electron states as has previously been proposed. However, they also suggest that intercalation can act to alter the nature and the dispersion of some of the energy bands in the unintercalated crystal. The bands which are most affected by the process are those which derive from orbitals which have the same symmetry as the lithium 2s orbital, namely, the titanium 4s conduction level and the tightly bound sulphur 3s levels.
Resumo:
Seven-transmembrane receptors (7TMRs), also termed G protein-coupled receptors (GPCRs), form the largest class of cell surface membrane receptors, involving several hundred members in the human genome. Near 30% of marketed pharmacological agents target 7TMRs. 7TMRs adopt multiple conformations upon agonist binding. Biased agonists, in contrast to non-biased agonists, are believed to stabilize conformations preferentially activating either G-protein- or ß-arrestin-dependent signalling pathways. However, proof that cognate conformations of receptors display structural differences within their binding site where biased agonism initiates, are still lacking. Here, we show that a non-biased agonist, cholecystokinin (CCK) induces conformational states of the CCK2R activating Gq-protein-dependent pathway (CCK2RG) or recruiting ß-arrestin2 (CCK2Rß) that are pharmacologically and structurally distinct. Two structurally unrelated antagonists competitively inhibited both pathways. A third ligand (GV150,013X), acted as a high affinity competitive antagonist on CCK2RG but was nearly inefficient as inhibitor of CCK2Rß. Several structural elements on both GV150,013X and in CCK2R binding cavity, which hinder binding of GV150,013X only to the CCK2Rß were identified. At last, proximity between two conserved amino acids from transmembrane helices 3 and 7 interacting through sulphur-aromatic interaction was shown to be crucial for selective stabilization of the CCK2Rß state. These data establish structural evidences for distinct conformations of a 7TMR associated with ß-arrestin-2 recruitment or G-protein coupling and validate relevance of the design of biased ligands able to selectively target each functional conformation of 7TMRs.
Resumo:
Correlation analyses were conducted on nickel (Ni), vanadium (V) and zinc (Zn) oral bioaccessible fractions (BAFs) and selected geochemistry parameters to identify specific controls exerted over trace element bioaccessibility. BAFs were determined by previous research using the unified BARGE method. Total trace element concentrations and soil geochemical parameters were analysed as part of the Geological Survey of Northern Ireland Tellus Project. Correlation analysis included Ni, V and Zn BAFs against their total concentrations, pH, estimated soil organic carbon (SOC) and a further eight element oxides. BAF data were divided into three separate generic bedrock classifications of basalt, lithic arenite and mudstone prior to analysis, resulting in an increase in average correlation coefficients between BAFs and geochemical parameters. Sulphur trioxide and SOC, spatially correlated with upland peat soils, exhibited significant positive correlations with all BAFs in gastric and gastro-intestinal digestion phases, with such effects being strongest in the lithic arenite bedrock group. Significant negative relationships with bioaccessible Ni, V and Zn and their associated total concentrations were observed for the basalt group. Major element oxides were associated with reduced oral trace element bioaccessibility, with Al2O3 resulting in the highest number of significant negative correlations followed by Fe2O3. spatial mapping showed that metal oxides were present at reduced levels in peat soils. The findings illustrate how specific geology and soil geochemistry exert controls over trace element bioaccessibility, with soil chemical factors having a stronger influence on BAF results than relative geogenic abundance. In general, higher Ni, V and Zn bioaccessibility is expected in peat soil types.
Resumo:
The system TlCo2Se2-xSx has been thoroughly investigated by neutron powder diffraction and SQUID magnetometry. TlCo2Se2-xSx is a layered tetragonal structure containing atomic cobalt layers separated by a distance of 6.4 angstrom in the sulphide and 6.8 angstrom in the selenide. The solid solubility of isovalent selenium and sulphur atoms in the structure makes it possible to continuously vary the interlayer distance and thereby tune the magnetic coupling between the Co-layers. At low temperatures, the Co-atoms are ferromagnetically ordered within the layers and magnetic moments lie in the ab-plane. However, these Co-moments form a helical magnetic structure that prevails for 0 <= x <= 1.5 with a gradual decrease of the angle between adjacent Co-layers from 122 degrees to 39 degrees. For x >= 1.75, a collinear ferromagnetic structure is stable. The relationship between the coupling angle and the Co-interlayer separation shows an almost linear behaviour. The helical phase contains no net spontaneous magnetic moment up to TlCo2SeS, where a small net magnetic moment appears that increases until the ferromagnetic structure is found for 1.75 <= x <= 2.0. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The chemisorption and reactivity of SO2 on Pt{111} have been studied by HREELS, XPS, NEXAFS and temperature-programmed desorption. At 160 K SO2 adsorbs intact at high coverages, with eta(2) S-O coordination to the surface. On annealing to 270 K, NEXAFS indicates the SO2 molecular plane essentially perpendicular to the surface. Preadsorbed O-a reacts with SO2 to yield adsorbed SO4, identified as the key surface species responsible for SO2-promoted catalytic alkane oxidation. Coadsorbed CO or propene efficiently reduce SO2 overlayers to deposit S-a, and the implications of this for catalytic systems are discussed.
Resumo:
Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5-6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO(2). The first and largest eruption caused the inward collapse of a stratovolcano and produced the 'Tofua' ignimbrite and a sub-circular caldera located slightly northwest of the island's centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands > 40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma-water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, largescale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the 'Hokula' Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km(3) of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of similar to 12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40-80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24x10(13) kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.
Resumo:
The 2010 Eyjafjallajökull lasted 39 days and had 4 different phases, of which the first and third (14–18 April and 5–6 May) were most intense. Most of this period was dominated by winds with a northerly component that carried tephra toward Europe, where it was deposited in a number of locations and was sampled by rain gauges or buckets, surface swabs, sticky-tape samples and air filtering. In the UK, tephra was collected from each of the Phases 1–3 with a combined range of latitudes spanning the length of the country. The modal grain size of tephra in the rain gauge samples was 25 um, but the largest grains were 100 um in diameter and highly vesicular. The mass loading was equivalent to 8–218 shards cm2, which is comparable to tephra layers from much larger past eruptions. Falling tephra was collected on sticky tape in the English Midlands on 19, 20 and 21st April (Phase 2), and was dominated by aggregate clasts (mean diameter 85 um, component grains <10 um). SEM-EDS spectra for aggregate grains contained an extra peak for sulphur, when compared to control samples from the volcano, indicating that they were cemented by sulphur-rich minerals e.g. gypsum (CaSO4⋅H2O). Air quality monitoring stations did not record fluctuations in hourly PM10 concentrations outside the normal range of variability during the eruption, but there was a small increase in 24-hour running mean concentration from 21–24 April (Phase 2). Deposition of tephra from Phase 2 in the UK indicates that transport of tephra from Iceland is possible even for small eruption plumes given suitable wind conditions. The presence of relatively coarse grains adds uncertainty to concentration estimates from air quality sensors, which are most sensitive to grain sizes <10 um. Elsewhere, tephra was collected from roofs and vehicles in the Faroe Islands (mean grain size 40 um, but 100 um common), from rainwater in Bergen in Norway (23–91 um) and in air filters in Budapest, Hungary (2–6 um). A map is presented summarizing these and other recently published examples of distal tephra deposition from the Eyjafjallajökull eruption. It demonstrates that most tephra deposited on mainland Europe was produced in the highly explosive Phase 1 and was carried there in 2–3 days.
Resumo:
Despite the extensive geographical range of palaeolimnological studies designed to assess the extent of surface water acidification in the United Kingdom during the 1980s, little attention was paid to the status of surface waters in the North York Moors (NYM). In this paper, we present sediment core data from a moorland pool in the NYM that provide a record of air pollution contamination and surface water acidification. The 41-cm-long core was divided into three lithostratigraphic units. The lower two comprise peaty soils and peats, respectively, that date to between approximately 8080 and 6740 cal. BP. The uppermost unit comprises peaty lake muds dating from between approximately ad 1790 and the present day (ad 2006). The lower two units contain pollen dominated by forest taxa, whereas the uppermost unit contains pollen indicative of open landscape conditions similar to those of the present. Heavy metal, spheroidal carbonaceous particle, mineral magnetics and stable isotope analysis of the upper sediments show clear evidence of contamination by air pollutants derived from fossil-fuel combustion over the last c. 150years, and diatom analysis indicates that the naturally acidic pool became more acidic during the 20th century. We conclude that the exceptionally acidic surface waters of the pool at present (pH=c. 4.1) are the result of a long history of air pollution and not because of naturally acidic local conditions. We argue that the highly acidic surface waters elsewhere in the NYM are similarly acidified and that the lack of evidence of significant recovery from acidification, despite major reductions in the emissions of acidic gases that have taken place over the last c. 30years, indicates the continuing influence of pollutant sulphur stored in catchment peats, a legacy of over 150years of acid deposition.