35 resultados para Stores or stock-room keeping
Resumo:
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1,3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF6] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF6] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF6] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF,] phase. it was also shown that the specific activity of the biocatalyst in the water-[bmim][PF6] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. (C) 2000 John Wiley & Sons, Inc.
Resumo:
A new method for modeling-frequency-dependent boundaries in finite-difference time-domain (FDTD) and Kirchhoff variable digital waveguide mesh (K-DWM) room acoustics simulations is presented. The proposed approach allows the direct incorporation of a digital impedance filter (DIF) in the Multidimensional (2D or 3D) FDTD boundary model of a locally reacting surface. An explicit boundary update equation is obtained by carefully constructing a Suitable recursive formulation. The method is analyzed in terms of pressure wave reflectance for different wall impedance filters and angles of incidence. Results obtained from numerical experiments confirm the high accuracy of the proposed digital impedance filter boundary model, the reflectance of which matches locally reacting surface (LRS) theory closely. Furthermore a numerical boundary analysis (NBA) formula is provided as a technique for an analytic evaluation of the numerical reflectance of the proposed digital impedance filter boundary formulation.
Resumo:
This paper examines (i) whether value-growth characteristics have more power than past performance in predicting return reversals; and (ii) whether typical rational behaviour such as incentives to delay paying capital gain taxes can better explain long-term reversals than past performance. We find that value-growth characteristics generally provide better explanations for long-term stock returns than past performance. The evidence also shows that winners identified by capital gains dominate past performance winners in predicting reversals in the cross-sectional comparison. However, in the time-series analysis, when returns on capital gain winners are adjusted by the Fama and French (1996) risk factors, the predictive power of capital gain winners disappears. Our results show that capital gain winners are heavily featured as growth stocks. Return reversals in capital gain winners potentially reflect market price corrections for growth stocks. We conclude that investors’ incentives to delay paying capital gain taxes cannot fully rationalise long-term reversals in the UK market. Our results also imply that the long-term return pattern potentially reflects a mixture of investor rational and irrational behaviour.
Resumo:
This article assesses the contribution of the various industrial sectors to the growth of the British equity market in the 1825–70 period. It also provides estimates of the rates of return on these industrial sectors in this period. The article then proceeds to examine whether differences in rates of return across the various sectors can be explained by risk or other financial factors. One of the main findings is that the relatively high rates of return in the banking, insurance, and miscellaneous sectors appear to be in some measure explained by the presence of extended liability and uncalled capital.
Resumo:
New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2-NMe2)(2)-2,6](-) (NCN) are described. These complexes are [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(6)-C10H14)] (2; C10H14 = p-cymene = C6H4Me-Pr-i-4), [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(5)-C5H5)(PPh3)] (5), and their isomeric forms [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(6)-C10H14)] (3) and [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(5)-C5H5)(PPh3)] (6), respectively. Complex 2 has been prepared from the reaction of [Li(NCN)](2) with [RuCl2(eta(6)-C10H14)](2), whereas complex 5 has been prepared by the treatment of [RuCl{eta(3)-N,C,N-C6H3(CH2NMe2)(2)-2,6}(PPh3)] (4) with [Na(C5H5)](n). Both 2 and 5 are formally 18-electron ruthenium(II) complexes in which the monoanionic potentially tridentate coordinating ligand NCN is eta(2)-C,N-bonded, In solution (halocarbon solvent at room temperature or in aromatic solvents at elevated temperature), the intramolecular rearrangements of 2 and 5 afford complexes 3 and 6, respectively. This is a result of a shift of the metal-C-aryl bond from position-1 to position-3 on the aromatic ring of the NCN ligand. The mechanism of the isomerization is proposed to involve a sequence of intramolecular oxidative addition and reductive elimination reactions of both aromatic and aliphatic C-H bonds. This is based on results from deuterium labeling, spectroscopic studies, and some kinetic experiments. The mechanism is proposed to contain fully reversible steps in the case of 5, but a nonreversible step involving oxidative addition of a methyl NCH2-H bond in the case of 2. The solid-state structures of complexes 2, 3, 5, and 6 have been determined by single-crystal X-ray diffraction. A new dinuclear 1,4-phenylene-bridged bisruthenium(II) complex, [1,4-{RuCl(eta(6)-C10H14)}(2){C-6(CH2NMe2)(4)-2,3,5,6-C,N,C',N'}] (9) has also been prepared from the dianionic ligand [C-6(CH2NMe2)(4)-2,3,5,6](2-) (C2N4). The C2N4 ligand is in an eta(2)-C,N-eta(2)-C',N'-bis(bidentate) bonding mode. Compound 9 does not isomerize in solution (halocarbon solvent), presumably because of the absence of an accessible C-aryl-H bond. Complex 9 could not be isolated in an analytically pure form, probably because of its high sensitivity to air and very low solubility, which precludes recrystallization.
Resumo:
The electrochemistry of HgCl(2) and [Hg(NTf(2))(2)] ([NTf(2)](-) = bis-{(trifluoromethyl)sulfonyl}imide) has been studied in room temperature ionic liquids. It has been found that the cyclic voltammetry of Hg(II) is strongly dependent on a number of factors (e.g., concentration, anions present in the mixture, and nature of the working electrode) and differs from that found in other media. Depending on conditions, the cyclic voltammetry of Hg(II) can give rise to one, two, or four reduction peaks, whereas the reverse oxidative scans show two to four peaks. Diffuse reflectance UV-vis spectroscopy and X-ray powder diffraction have been used to aid the assignment of the voltammetric waves.
Resumo:
In this work, we have shown that a 100 MHz Love wave device can be used to determine whether room temperature ionic liquids (RTILs) are Newtonian fluids and have developed a technique that allows the determination of the density-viscosity product, rho eta of a Newtonian RTIL. In addition, a test for a Newtonian response was established by relating the phase change to insertion loss change. Five concentrations of a water-miscible RTIL and seven pure RTILs were measured. The changes in phase and insertion loss were found to vary linearly with the square root of the density-viscosity product for values up to (rho eta)(1/2) similar to 10 kg m(-2) s(-1/2). The square root of the density-viscosity product was deduced from the changes in either phase or insertion loss using glycerol as a calibration liquid. In both cases, the deduced values of rho eta agree well with those measured using viscosity and density meters. Miniaturization of the device, beyond that achievable with the lower-frequency quartz crystal microbalance approach, to measure smaller volumes is possible. The ability to fabricate Love wave and other surface acoustic wave sensors using planar metallization technologies gives potential for future integration into lab-on-a-chip analytical systems for characterizing ionic liquids.
Resumo:
The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)], as efficiently implemented in the SIESTA code [G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by approximate to 7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Popolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007)]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010)]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields. (C) 2011 American Institute of Physics. [doi:10.1063/1.3652897]
Resumo:
In this article, we describe general trends to be expected at short times when an excess electron is generated or injected in different room-temperature ionic liquids (RTILs). Perhaps surprisingly, the excess electron does not localize systematically on the positively charged cations. Rather, the excess charge localization pattern is determined by the cation and anion HOMO/LUMO gaps and, more importantly, by their relative LUMO alignments. As revealed by experiments, the short-time (ps/ns) transient UV spectrum of excess electrons in RTILs is often characterized by two bands, a broad band at low energies (above 1000 nm) and another weaker band at higher energies (around 400 nm). Our calculations show that the dry or presolvated electron spectrum (fs) also has two similar features. The broad band at low energies is due to transitions between electronic states with similar character on ions of the same class but in different locations of the liquid. The lower-intensity band at higher energies is due to transitions in which the electron is promoted to electronic states of different character, in some cases on counterions. Depending on the chemical nature of the RTIL, and especially on the anions, excess electrons can localize on cations or anions. Our findings hint at possible design strategies for controlling electron localization, where electron transfer or transport across species can be facilitated or blocked depending on the alignment of the electronic levels of the individual species.
Resumo:
Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10-7 sm-1.
Resumo:
Radical anions of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) are shown to be reactive in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, ([C(4)mPyrr][NTf2]), by means of voltammetric measurements. In particular, they are shown to react via a DISP type mechanism such that the electrolysis of p-BrC6H4NO2 occurs consuming between one and two electrons per reactant molecule, leading to the formation of the nitrobenzene radical anion and bromide ions. This behaviour is a stark contrast to that in conventional non-aqueous solvents such as acetonitrile, dimethyl sulfoxide or N,N-dimethylformamide, which suggests that the ionic solvent promotes the reactivity of the radical anion, probably via stabilisation of the charged products.
Resumo:
Some commentators worry that a plurinational constitutional order can only ever be an inherently unstable modus vivendi. They fear that the accommodation of sub-state nationalism will tend to undermine the viability of constitutional democracies. This article enlists Ronald Dworkin’s theory of ‘law as integrity’ to show how these concerns might be assuaged. My central claim is that the expressive value of integrity can drive a divided society in the direction of an eventual community of principle, even in the absence of a common political identity. I argue that this model of political community is a more plausible prescription for divided societies than the theory that competing nationalisms might be superseded by constitutional patriotism. I go on to explain, however, that integrity has a better chance of realizing this potential if the generally judge-centric focus of Dworkin’s theory is expanded to make greater room for non-judicial interpretative responsibility. Occasional references are made to the example of Northern Ireland to illustrate my points.
Resumo:
for piano, violin, violin or viola, cello
Resumo:
Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. Whereas there are approaches for robustness that rely largely on built-in redundancy, we adopt a responsive approach that is more akin to that of biological networks e.g. the brain. The general goal of self-healing distributed graphs is to maintain certain network properties while recovering from failure quickly and making bounded alterations locally. Several self-healing algorithms have been suggested in the recent literature [IPDPS'08, PODC'08, PODC'09, PODC'11]; they heal various network properties while fulfilling competing requirements such as having low degree increase while maintaining connectivity, expansion and low stretch of the network. In this work, we augment the previous algorithms by adding the notion of edge-preserving self-healing which requires the healing algorithm to not delete any edges originally present or adversarialy inserted. This reflects the cost of adding additional edges but more importantly it immediately follows that edge preservation helps maintain any subgraph induced property that is monotonic, in particular important properties such as graph and subgraph densities. Density is an important network property and in certain distributed networks, maintaining it preserves high connectivity among certain subgraphs and backbones. We introduce a general model of self-healing, and introduce xheal+, an edge-preserving version of xheal[PODC'11]. © 2012 IEEE.
Resumo:
This study examines the relationship between asset liquidity and stock liquidity across 47 countries. In support of the valuation uncertainty hypothesis, we find that firms with greater asset liquidity on average have higher stock liquidity. More importantly, our study shows that asset liquidity plays amore significant role in resolving valuation uncertainty in countries with poor information environment. For example, we find that the asset–stock liquidity relationship is stronger in countries with poor accounting standards. We further find evidence that after the adoption of IFRS, the improved accounting information environment results in a weaker asset–stock liquidity relation, but only in countries with a strong legal regime. Finally, our study shows that the positive asset–stock liquidity relationship may be attributed to transparency and/or liquidity reasons.