17 resultados para Stochastic modelling
Resumo:
One of the most widely used techniques in computer vision for foreground detection is to model each background pixel as a Mixture of Gaussians (MoG). While this is effective for a static camera with a fixed or a slowly varying background, it fails to handle any fast, dynamic movement in the background. In this paper, we propose a generalised framework, called region-based MoG (RMoG), that takes into consideration neighbouring pixels while generating the model of the observed scene. The model equations are derived from Expectation Maximisation theory for batch mode, and stochastic approximation is used for online mode updates. We evaluate our region-based approach against ten sequences containing dynamic backgrounds, and show that the region-based approach provides a performance improvement over the traditional single pixel MoG. For feature and region sizes that are equal, the effect of increasing the learning rate is to reduce both true and false positives. Comparison with four state-of-the art approaches shows that RMoG outperforms the others in reducing false positives whilst still maintaining reasonable foreground definition. Lastly, using the ChangeDetection (CDNet 2014) benchmark, we evaluated RMoG against numerous surveillance scenes and found it to amongst the leading performers for dynamic background scenes, whilst providing comparable performance for other commonly occurring surveillance scenes.
Resumo:
Predicting life expectancy has become of upmost importance in society. Pension providers, insurance companies, government bodies and individuals in the developed world have a vested interest in understanding how long people will live for. This desire to better understand life expectancy has resulted in an explosion of stochastic mortality models many of which identify linear trends in mortality rates by time. In making use of such models for forecasting purposes we rely on the assumption that the direction of the linear trend (determined from the data used for fitting purposes) will not change in the future, recent literature has started to question this assumption. In this paper we carry out a comprehensive investigation of these types of models using male and female data from 30 countries and using the theory of structural breaks to identify changes in the extracted trends by time. We find that structural breaks are present in a substantial number of cases, that they are more prevalent in male data than in female data, that the introduction of additional period factors into the model reduces their presence, and that allowing for changes in the trend improves the fit and forecast substantially.