76 resultados para Stepped Cylinder
Resumo:
We have performed density functional theory (DFT) calculations to investigate the reaction mechanism of the cleavage of the carbonyl bond in amides on both flat and stepped Ru surfaces. The simplest amide molecule, N,N-dimethylacetamide (DMA), was used as the exemplar model molecule. Through the calculations, the most stable transition states (TSs) in all the pathways on both flat and stepped Ru surfaces are identified. Comparing the energy profiles of different reaction pathways, we find that a direct cleavage mechanism is always energetically favored as compared with an alternative hydrogen-induced mechanism on either the flat or stepped Ru surface. It is easier for the dissociation process to occur on the stepped surface than on the flat surface. However, as compared with the terrace, the superiority of step sites boosting the C-O bond dissociation is not as evident as that on CO dissociation.
Resumo:
Natural convection heat transfer from a heat generating horizontal cylinder enclosed in a square cavity, where a temperature difference exists across its vertical walls has been experimentally investigated for the range 2×104
Resumo:
This study presents the use of a stepped ground plane as a means to increase the gain and front-to-back ratio of an Archimedean spiral which operates in the frequency range 3–10 GHz. The backing structure is designed to optimize the antenna performance in discrete 1 GHz bands by placing each of the eight metal steps one quarter wavelength below the corresponding active regions of the spiral. Simulated and experimental results show that this type of ground plane can be designed to enhance the antenna performance over the entire 105% operating bandwidth of the spiral.
Resumo:
A density functional theory study of methanol dehydrogenation over stepped Pt(2 1 1) surfaces without and with Ru modification was carried out to understand fuel catalytic reactions on Pt-based catalysts. Two main pathways of the CH3OH dehydrogenation were examined: the O–H pathway which was initiated by O–H bond scission to form the methoxy (CH3O) intermediate followed by sequential cleavage of C–H bonds to CO, and the C–H pathway which was initiated by C–H bond scission to form the hydroxymethyl (CH2OH) followed by two C–H bond cleavages to COH and then CO. Possible crossover reactions between the O–H and C–H pathways were also computed. Compared to flat Pt(1 1 1), stepped Pt(2 1 1) increases the adsorption energies of intermediates, making no significant contribution to decreasing the reaction barriers of most elementary steps involved, except in the first hydrogen scission. However, on the Ru-modified surface, a significant reduction was found in reaction barriers for the first step of the C–H bond scission and a number of further dehydrogenation steps crossing over to the O–H pathway, with the most facile paths identified. Our data reveals the complexity of methanol catalytic reaction processes at the atomic level and contributes to a fundamental understanding of fuel reactions on Pt-based catalysts.
Resumo:
The activation of oxygen molecules is an important issue in the gold-catalyzed partial oxidation of alcohols in aqueous solution. The complexity of the solution arising from a large number of solvent molecules makes it difficult to study the reaction in the system. In this work, O-2 activation on an Au catalyst is investigated using an effective approach to estimate the reaction barriers in the presence of solvent. Our calculations show that O-2 can be activated, undergoing OOH* in the presence of water molecules. The OOH* can readily be formed on Au(211) via four possible pathways with almost equivalent free energy barriers at the aqueous-solid interface: the direct or indirect activation of O-2 by surface hydrogen or the hydrolysis of O-2 following a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. Among them, the Eley-Rideal mechanism may be slightly more favorable due to the restriction of the low coverage of surface H on Au(211) in the other mechanisms. The results shed light on the importance of water molecules on the activation of oxygen in gold-catalyzed systems. Solvent is found to facilitate the oxygen activation process mainly by offering extra electrons and stabilizing the transition states. A correlation between the energy barrier and the negative charge of the reaction center is found. The activation barrier is substantially reduced by the aqueous environment, in which the first solvation shell plays the most important role in the barrier reduction. Our approach may be useful for estimating the reaction barriers in aqueous systems.
Resumo:
Despite the abundance of studies investigating the performance of composite structures under crush loading, disagreement remains in the literature regarding the effect of increased strain rate on the crush response. This study reports an experimental investigation of the behaviour of a carbon-epoxy composite energy absorber under static and dynamic loading with a strain rate of up to 100s<sup>-1</sup>. Consistent damage modes and measured force responses were obtained in samples tested under the same strain rate. The energy absorption was found to be independent of strain rate as the total energy absorption appeared to be largely associated with fibre-dominated fracture, which is independent of strain rate within the studied range. The results from this study are beneficial for the design of energy absorbing structures.
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the methods developed previously by Callahan, et al. (1) to examine a variety of two-stroke engines and one four-stroke engine. The two-stroke engines were: a high performance single-cylinder, a low performance single-cylinder, a high performance multi-cylinder, and a medium performance multi-cylinder. The four-stroke engine was a high performance single-cylinder unit. Each engine was modeled in Virtual Engines, which is a fully detailed one-dimensional thermodynamic engine simulator. Measured or predicted in-cycle speed data were input into the engine models. Predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The simulations for the high performance single-cylinder two-stroke engine predicted significant in-cycle crankshaft speed fluctuation amplitudes and significant changes in performance when the fluctuations were input into the engine model. This was validated experimentally on a firing test engine based on a Yamaha YZ250. The four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation assumed in the model. Measured speed fluctuations from a firing Yamaha YZ400F engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar fluctuation profiles and changes in performance. It is shown that the gear reduction between the crankshaft and clutch allowed for this similar behavior. The multi-cylinder, high performance two-stroke engine also showed significant changes in performance, in this case depending on the firing configuration. The low output two-stroke engine simulation showed only a negligible change in performance in spite of high amplitude speed fluctuations. This was due to its flat torque versus speed characteristic. The medium performance multi-cylinder two-stroke engine also showed only a negligible change in performance, in this case due to a relatively high inertia rotating assembly and multiple cylinder firing events within the revolution. These smoothed the net torque pulsations and reduced the amplitude of the speed fluctuation itself.
Resumo:
This paper describes a model of a 1.8-litre four-cylinder four-stroke gasoline engine fitted with a close-coupled three-way catalyst (TWC). Designed to meet EURO 3 emissions standards, the engine includes some advanced emission control features in addition to the TWC, namely: variable valve timing (VVT), swirl control plates, and exhaust gas recirculation (EGR). Gas flow is treated as one-dimensional (1D) and unsteady in the engine ducting and in the catalyst. Reflection and transmission of pressure waves at the boundaries of the catalyst monolith are modelled. In-cylinder combustion is represented by a two-zone burn model with dissociation and reaction kinetics. A single Wiebe analysis of measured in-cylinder pressure data is used to determine the mass fraction burned as a function of crank angle (CA) at each engine speed. Measured data from steady-state dynamometer tests are presented for operation at wide open throttle (WOT) over a range of engine speeds. These results include CA-resolved traces of pressure at various locations throughout the engine together with cycle-averaged traces of gas composition entering the catalyst as indicated by a fast-response emissions analyser. Simulated engine performance and pressure wave action throughout the engine are well validated by the measured data.
Resumo:
This paper describes an experimental investigation into the surface heat transfer coefficient of finned metal cylinders in a free air stream. Eight cast aluminium alloy cylinders were tested with four different fin pitches and five different fin lengths. The cylinders and their fins were designed to be representative of those found on a motorcycle engine. Each electrically heated cylinder was mounted in a wind tunnel and subjected to a range of air speeds between 2 and 20 m/s. The surface heat transfer coefficient, h, was found primarily to be a function of the air speed and the fin separation, with fin length having a lesser effect. The coefficient increases with airspeed and as the fins are separated or shortened. It was also noted that a limiting value of coefficient exists, influenced only by airspeed. Above the limiting value the surface heat transfer could not be increased by further separation of the fins or reduction in their length.
Resumo:
The rimming ?ow of a power-law ?uid in the inner surface of a horizontal rotating cylinder is investigated. Exploiting the fact that the liquid layer is thin, the simplest lubrication theory is applied. The generalized run-off condition for the steady-state ?ow of the power-law liquid is derived. In the bounds implied by this condition, ?lm thickness admits a continuous solution. In the supercritical case when the mass of non-Newtonian liquid exceeds a certain value or the speed of rotation is less than an indicated limit, a discontinuous solution is possible and a hydraulic jump may occur in the steady-state regime. The location and height of the hydraulic jump for the power-law liquid is determined.
Resumo:
Rimming flow on the inner surface of a horizontal rotating cylinder is investigated. Using a scale analysis, a theoretical description is obtained for steady-state non-Newtonian flow. Simple lubrication theory is applied since the Reynolds number is small and the liquid film is thin. Since the Deborah number is very small the flow is viscometric. The shear-thinning number, which characterizes the shear-thinning effect, may be small or large. A general constitutive law for this kind of flow requires only a single function relating shear stress and shear rate that corresponds to a generalized Newtonian liquid. For this case the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a continuous steady-state solution is proved. The rheological models, which show Newtonian behavior at low shear rates with transition to power-law shear thinning at moderate shear rates, are considered. Numerical results are carried out for the Carreau and Ellis models, which exhibit Newtonian behavior near the free surface and power-law behavior near the wall of the rotating cylinder.
Resumo:
BACKGROUND: Hypertension and cognitive impairment are prevalent in older people. It is known that hypertension is a direct risk factor for vascular dementia and recent studies have suggested hypertension also impacts upon prevalence of Alzheimer's disease. The question is therefore whether treatment of hypertension lowers the rate of cognitive decline. OBJECTIVES: To assess the effects of blood pressure lowering treatments for the prevention of dementia and cognitive decline in patients with hypertension but no history of cerebrovascular disease. SEARCH STRATEGY: The trials were identified through a search of CDCIG's Specialised Register, CENTRAL, MEDLINE, EMBASE, PsycINFO and CINAHL on 27 April 2005. SELECTION CRITERIA: Randomized, double-blind, placebo controlled trials in which pharmacological or non-pharmacological interventions to lower blood pressure were given for at least six months. DATA COLLECTION AND ANALYSIS: Two independent reviewers assessed trial quality and extracted data. The following outcomes were assessed: incidence of dementia, cognitive change from baseline, blood pressure level, incidence and severity of side effects and quality of life. MAIN RESULTS: Three trials including 12,091 hypertensive subjects were identified. Average age was 72.8 years. Participants were recruited from industrialised countries. Mean blood pressure at entry across the studies was 170/84 mmHg. All trials instituted a stepped care approach to hypertension treatment, starting with a calcium-channel blocker, a diuretic or an angiotensin receptor blocker. The combined result of the three trials reporting incidence of dementia indicated no significant difference between treatment and placebo (Odds Ratio (OR) = 0.89, 95% CI 0.69, 1.16). Blood pressure reduction resulted in a 11% relative risk reduction of dementia in patients with no prior cerebrovascular disease but this effect was not statistically significant (p = 0.38) and there was considerable heterogeneity between the trials. The combined results from the two trials reporting change in Mini Mental State Examination (MMSE) did not indicate a benefit from treatment (Weighted Mean Difference (WMD) = 0.10, 95% CI -0.03, 0.23). Both systolic and diastolic blood pressure levels were reduced significantly in the two trials assessing this outcome (WMD = -7.53, 95% CI -8.28, -6.77 for systolic blood pressure, WMD = -3.87, 95% CI -4.25, -3.50 for diastolic blood pressure).Two trials reported adverse effects requiring discontinuation of treatment and the combined results indicated a significant benefit from placebo (OR = 1.18, 95% CI 1.06, 1.30). When analysed separately, however, more patients on placebo in SCOPE were likely to discontinue treatment due to side effects; the converse was true in SHEP 1991. Quality of life data could not be analysed in the three studies. There was difficulty with the control group in this review as many of the control subjects received antihypertensive treatment because their blood pressures exceeded pre-set values. In most cases the study became a comparison between the study drug against a usual antihypertensive regimen. AUTHORS' CONCLUSIONS: There was no convincing evidence from the trials identified that blood pressure lowering prevents the development of dementia or cognitive impairment in hypertensive patients with no apparent prior cerebrovascular disease. There were significant problems identified with analysing the data, however, due to the number of patients lost to follow-up and the number of placebo patients given active treatment. This introduced bias. More robust results may be obtained by analysing one year data to reduce differential drop-out or by conducting a meta-analysis using individual patient data.
Resumo:
The most common mode of deactivation suffered by catalysts fitted to two-stroke engines has traditionally been thermal degradation, or even meltdown, of the washcoat and substrate. The high temperatures experienced by these catalysts are caused by excessively high concentrations of HC and CO in the exhaust gas which are, in turn, caused by a rich AFR and the loss of neat fuel to the exhaust during the scavenging period. The effects of catalyst poisoning due to additives in the oil is often regarded as a secondary, or even negligible, deactivating mechanism in two-stroke catalysts and has therefore received little attention. However, with the introduction of direct in-cylinder fuel injection to some larger versions of this engine, the quantities of HC escaping to the exhaust can be reduced to levels similar to those found on four-stroke gasoline engines. Under these conditions, the effects of poisoning are much more significant to catalyst durability, particularly for crankcase scavenged derivatives which allow considerable quantities of oil to escape into the exhaust in a neat, or partially burned form. In this paper the effects of oil-derived sulphur on catalyst performance are examined using specialised test apparatus. The oil used throughout the study was formulated specifically for a two-stroke engine fitted with direct in-cylinder fuel injection. The sulphur content of this oil was 0.21% by mass and particular attention was paid to the role of this element in the resulting deactivation. The catalyst was also designed for two-stroke applications and contained a high palladium loading of 300g/ft3 (28g/l) to prolong the life of the catalyst. It was found that the sulphur caused permanent deactivation of the CO reaction and increased the light-off temperature by around 40oC after oiling for 60 hours. This deactivation was progressive and led to a reduction in surface area of the washcoat, particularly in the micropores of around 5Å diameter. By using a validated catalyst model the change in surface area of the precious metal was estimated. It was found that the simulated palladium surface area had to be reduced by a factor of around 7.5 to produce the light-off temperature of the deactivated catalyst. Conversely, the light-off temperature of the C3H6 reaction was barely affected by the deactivation.
Resumo:
Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.