43 resultados para Stars: fundamental parameters
Resumo:
An analysis of high-resolution VLT/UVES spectra of two B-type main sequence stars, NGC 346-11 and AV 304, in the Small Magellanic Cloud (SMC), has been undertaken, using the non-LTE tlusty model atmospheres to derive the stellar parameters and chemical compositions of each star. The chemical compositions of the two stars are in reasonable agreement. Moreover, our stellar analysis agrees well with earlier analyses of H II regions. The results derived here should be representative of the current base-line chemical composition of the SMC interstellar medium as derived from B-type stars.
Resumo:
High-resolution (R approximate to 40 000) echelle spectroscopic observations of 13 high-latitude early-type stars are presented. These stars comprise the final part of a complete magnitude range limited sample based on low-resolution spectroscopy of targets drawn from the Palomar-Green survey. The magnitude range under consideration is 13 less than or equal to B-PG less than or equal to 14.6, corresponding to an approximate distance limit for main-sequence B-type objects of 5 less than or equal to d less than or equal to 40 kpc. Three stars are found to be apparently normal, young stars, based on their positions on the (T-eff, log g) diagram, normal abundance patterns and relatively large projected rotational velocities. A further star, PG 1209+263, was found to belong to the chemically peculiar (CP) silicon star class of objects. The remainder are evolved subluminous stars lying on post- horizontal branch (post-HB) tracks, with the exception of PG 2120+062, which appears to be in a post-asymptotic giant branch evolutionary stage. For the young stars in the sample, we have derived distance and age estimates through comparison of the atmospheric parameters with recent theoretical evolutionary models. We discuss formation scenarios by comparing times-of- flight and evolutionary time-scales. It is found that all stars could have formed in the Galactic disc and been ejected from there soon after their birth, with the exception of PG 1209+263. The adopted proper motion is found to be a crucial factor in the kinematical analysis. We also present some number densities for young B-type halo stars, which indicate that they are extremely scarce objects.
Resumo:
We present model atmosphere analyses of high resolution Keck and VLT optical spectra for three evolved stars in globular clusters, viz. ZNG-1 in M 10, ZNG-1 in M 15 and ZNG-1 in NGC 6712. The derived atmospheric parameters and chemical compositions confirm the programme stars to be in the post- Asymptotic Giant Branch (post-AGB) evolutionary phase. Differential abundance analyses reveal CNO abundance patterns in M 10 ZNG-1, and possibly M 15 ZNG-1, which Suggest that both objects may have evolved off the AGB before the third dredge-up occurred. The abundance pattern of these stars is similar to the third class of optically, bright post-AGB objects discussed by van Winckel (1997). Furthermore, M 10 ZNG-1 exhibits a large C underabundance (with Delta[C/O] similar to -1.6 dex), typical of other hot post-AGB objects. Differential Delta[alpha/Fe] abundance ratios in both M 10 ZNG-1 and NGC 6712 ZNG-1 are found to be approximately 0.0 dex, with the Fe abundance of the former being in disagreement with the cluster metallicity of M 10. Given that the Fe absorption features in both M 10 ZNG-1 and NGC6712 ZNG-1 are well observed and reliably modelled, we believe that these differential Fe abundance estimates to be secure. However, our Fe abundance is difficult to explain in terms of previous evolutionary processes that Occur oil both the Horizontal Branch and the AGB.
Resumo:
We present an analysis of interstellar NaI (lambda(air) = 3302.37 and 3302.98 angstrom), TiII (lambda(air) = 3383.76 angstrom) and CaII K (lambda(air) = 3933.66 angstrom) absorption features for 74 sightlines towards O- and B-type stars in the Galactic disc. The data were obtained from the Ultraviolet and Visual Echelle Spectrograph Paranal Observatory Project, at a spectral resolution of 3.75 km s(-1) and with mean signal-to-noise ratios per pixel of 260, 300 and 430 for the NaI, TiII and CaII observations, respectively. Interstellar features were detected in all but one of the TiII sightlines and all of the CaII sightlines. The dependence of the column density of these three species with distance, height relative to the Galactic plane, HI column density, reddening and depletion relative to the solar abundance has been investigated. We also examine the accuracy of using the NaI column density as an indicator of that for HI. In general, we find similar strong correlations for both Ti and Ca, and weaker correlations for Na. Our results confirm the general belief that Ti and Ca occur in the same regions of the interstellar medium ( ISM) and also that the TiII/CaII ratio is constant over all parameters. We hence conclude that the absorption properties of Ti and Ca are essentially constant under the general ISM conditions of the Galactic disc.
Resumo:
High resolution echelle spectroscopy is presented for thirteen stars lying in the direction of the Galactic centre which, on the basis of photographic photometry and low dispersion spectroscopy, have been classified as early-B-type. Eight of these stars have large rotational velocities which preclude a detailed analysis. The five stars with moderate to low projected rotational velocities have been analysed using model atmosphere techniques to determine atmospheric parameters and chemical compositions. Two of these stars appear to be evolved blue horizontal branch objects on the basis of their chemical compositions and small projected rotational velocity. The evolutionary status of a third is ambiguous but it is probably a post-asymptotic-giant branch star. The remaining two objects are probably young massive stars and show enhanced abundances of N, C, Mg and Si, consistent with their formation in the inner part of the Galactic disk. However their O abundances are normal, confirming results found previously for other early- type stars, which would imply a flat abundance gradient for this element in the inner region of our Galaxy.
Resumo:
We present high quality spectroscopic data for two massive stars in the OB 10 association of M31, OB 10-64 (B0 la) and OB 10-WRI (WC6). Medium resolution spectra of both stars were obtained using the ISIS spectrograph on the William Herschel Telescope. This is supplemented with Hubble Space Telescope STIS UV spectroscopy and Keck I HIRES data for OB 10-64. A non- local thermodynamic equilibrium (LTE) model atmosphere and abundance analysis for OB 10-64 is presented, indicating that this star has similar photospheric CNO, Mg and Si abundances to solar neighbourhood massive stars. A wind analysis of this early B-type supergiant reveals a mass-loss rate of (M)over dot = 1.6 x 10(-6) M-circle dot yr(-1), and v(infinity) = 1650 km s(-1). The corresponding wind momentum is in good agreement with the wind momentum-luminosity relationship found for Galactic early-B supergiants. Observations of OB 10-WRI are analysed using a non-LTE, line-blanketed code, to reveal approximate stellar parameters of log L/L-circle dot similar to 5.7, T-* - 75 kK, v(infinity) similar to 3000 km s(-1), (M)over dot/(M-circle dot yr(-1)) similar to 10(-4.3) adopting a clumped wind with a filling factor of 10 per cent. Quantitative comparisons are made with the Galactic WC6 star HD 92809 (WR23) revealing that OB 10-WR1 is 0.4 dex more luminous, though it has a much lower C/He ratio (similar to0.1 versus 0.3 for HD 92809). Our study represents the first detailed, chemical model atmosphere analysis for either a B-type supergiant or a Wolf- Rayet (WR) star in Andromeda, and shows the potential of how such studies can provide new information on the chemical evolution of galaxies and the evolution of massive stars in the local Universe.
Resumo:
We have studied the optical spectra of a sample of 31 O- and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v(r) sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v(r)) distribution that can be characterised by a mean velocity of about 160-190 km s(-1) and an effective half width of 100-150 km s(-1). The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring vr. The mass loss rates of the SMC objects having luminosities of log L-star/L-circle dot greater than or similar to 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine. M accurately from the optical spectrum. Three targets were classified as Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower luminosity targets that were not classified as Vz stars are also found to lie near the ZAMS. We argue that this is related to a temperature effect inhibiting cooler from displaying the spectral features required for the Vz luminosity class.
Resumo:
We present an analysis of high resolution VLT-FLAMES spectra of 61 B-type stars with relatively narrow-lined spectra located in 4 fields centered on the Milky Way clusters; NGC 3293 and NGC 4755 and the Large and Small Magellanic cloud clusters; NGC 2004 and NGC 330. For each object a quantitative analysis was carried out using the non-LTE model atmosphere code TLUSTY; resulting in the determination of their atmospheric parameters and photospheric abundances of the dominant metal species (C, N, O, Mg, Si, Fe). The results are discussed in relation to our earlier work on 3 younger clusters in these galaxies; NGC 6611, N11 and NGC 346 paying particular attention to the nitrogen abundances which are an important probe of the role of rotation in the evolution of stars. This work along with that of the younger clusters provides a consistent dataset of abundances and atmospheric parameters for over 100 B-type stars in the three galaxies. We provide effective temperature scales for B-type dwarfs in all three galaxies and for giants and supergiants in the SMC and LMC. In each galaxy a dependence on luminosity is found between the three classes with the unevolved dwarf objects having significantly higher effective temperatures. A metallicity dependence is present between the SMC and Galactic dwarf objects, and whilst the LMC stars are only slightly cooler than the SMC stars, they are significantly hotter than their Galactic counterparts.
Resumo:
Atmospheric parameters and surface chemical compositions are presented for eight stars, classified as B1 or B2 but with a range of luminosity classes, in the northern double cluster h and chi Persei. Echelle spectroscopy (covering the wavelength region 3900 to 4700 Ä) and grating spectroscopy (of the Balmer, H? and Hß lines) were analysed using non-LTE synthetic spectra based on LTE line-blanketed atmosphere structures. High microturbulences are found in our sample, and this quantity must be included in the computation of the non-LTE level populations; its effect is generally to decrease the derived metal abundances by typically 0.1 dex but by up to 0.4 dex. Our absolute abundances are in reasonable agreement with those previously found for main sequence B-type stars, while we find some evidence for small abundance variations (particularly for nitrogen) within our sample. One star (BD+56 678) appears to be a spectrum variable and at two epochs shows a highly enriched nitrogen spectrum. Our atmospheric parameters imply that two stars have previously been mis-identified as main sequence objects and a distance modulus, at the higher end of the values previously deduced. The observational HR diagram is consistent with stellar evolutionary models that explicitly include the effects of rotation.
Resumo:
Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg, and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to similar to 300 km s(-1) using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen-enriched intrinsic slow rotators (nu sin i less than or similar to 50 km s(-1)) incompatible with our models (similar to 20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (dex) fast rotators (log g < 3.7 dex) that are relatively unenriched (a further similar to 20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen-burning main sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields is required to understand the surface properties of a population of massive main- sequence stars.
Resumo:
We investigate the effects that star-spots have on the light curves of eclipsing binaries, and in particular how they may affect the accurate measurement of eclipse timings. Concentrating on systems containing a low-mass main-sequence star and a white dwarf, we find that if star-spots exhibit the Wilson depression they can alter the times of primary eclipse ingress and egress by several seconds for typical binary parameters and star-spot depressions. In addition, we find that the effect on the eclipse ingress/egress times becomes more profound for lower orbital inclinations. We show how it is possible, in principle, to determine estimates of both the binary inclination and the depth of the Wilson depression from light curve analysis.
Resumo:
The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin, evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects, the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography, an indirect imaging technique that can be used to map the Roche-lobe-filling secondary. The review begins with a description of the basic principles that underpin Roche tomography, including methods for determining the system parameters. Finally, we conclude with a look at the main scientific highlights to date, including the first unambiguous detection of starspots on AE Aqr B, and consider the future prospects of this technique.
Resumo:
We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.
Resumo:
High-resolution optical spectra of 57 Galactic B-type supergiant stars have been analysed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-local thermodynamic equilibrium grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However, for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However, a correlation was found with the inferred projected rotational velocities of the main-sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulence and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to subphotospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.
Resumo:
Aims. We compare the predictions of evolutionary models for early-type stars with atmospheric parameters, projected rotational velocities and nitrogen abundances estimated for a sample of Be-type stars. Our targets are located in 4 fields centred on the Large Magellanic Cloud cluster: NGC 2004 and the N 11 region as well as the Small Magellanic Cloud clusters: NGC 330 and NGC 346.