62 resultados para Spatio-temporal variation
Resumo:
The crowned sifaka (Propithecus coronatus) and Decken’s sifaka (Propithecus deckenii) are Endangered lemurs endemic to west and central Madagascar. Both have suffered habitat loss and fragmentation throughout their ranges. The goal
of this study, conducted in the Mahavavy-Kinkony Wetland Complex (MKWC) in northwestern Madagascar, was to assess the effects of historical change in the species’ habitats, and to model the potential impact of further land-use change on their habitats. The IDRISI Andes Geographical Information System and image-processing software was used for satellite-image classifiation, and the Land Change Modeler was used to compare the natural habitat of the species from 1973 to 2005, and to predict available habitat for 2050. We analyzed two forests in the MKWC occupied by P. coronatus (Antsilaiza and Anjohibe), and three forests occupied by P. deckenii (Tsiombikibo, Marofandroboka and Andohaomby). The two forests occupied by P. coronatus contracted during the period 1949–1973, but then expanded to exceed their 1949 area by 28% in 2005. However, the land change model predicted that they will contract again to match their 1949 area by 2050, and will again lose their corridor connection, meaning that the conservation gains for this species in the complex are at risk of being reversed. The three forests occupied by P. deckenii have declined in area steadily since 1949, losing 20% of their original area by 2005, and are predicted to lose a further 15% of their original area by 2050. Both species are therefore at risk of becoming even more threatened if land-use change continues within the complex. Improved conservation of the remaining forest is recommended to avoid further loss, as well as ecological restoration and reforestation to promote connectivity between the forests. A new strategy for controlling agriculture and forest use is required in order to avoid further destruction of the forest.
Resumo:
We propose a spatio-temporal rich model of motion vector planes as a part of a full steganalytic system against motion vector based steganography. Superior detection accuracy of the rich model over the previous methods has been lately demonstrated for digital images in both spatial and DCT domain. It has not been heretofore used for detection of motion vector steganography. We also introduced a transformation so as to extend the feature set with temporal residuals. We carried out the tests along with most recent motion vector steganalysis and steganography methods. Test results show that the proposed model delivers an outstanding performance compared to the previous methods.
Resumo:
The last decade has witnessed an unprecedented growth in availability of data having spatio-temporal characteristics. Given the scale and richness of such data, finding spatio-temporal patterns that demonstrate significantly different behavior from their neighbors could be of interest for various application scenarios such as – weather modeling, analyzing spread of disease outbreaks, monitoring traffic congestions, and so on. In this paper, we propose an automated approach of exploring and discovering such anomalous patterns irrespective of the underlying domain from which the data is recovered. Our approach differs significantly from traditional methods of spatial outlier detection, and employs two phases – i) discovering homogeneous regions, and ii) evaluating these regions as anomalies based on their statistical difference from a generalized neighborhood. We evaluate the quality of our approach and distinguish it from existing techniques via an extensive experimental evaluation.
Resumo:
Although interactions between seaweeds and sponges have been studied in detail, general information concerning the whole epibiontic algal assemblage associated with a sponge species is virtually non-existent. We present here the first study in which the macroalgal community associated with a sponge, Haliclona indistincta (Bowerbank), was examined in detail. In the period October 2009-September 2010, the seaweed assemblage epibiontic on H. indistincta at a site of the Irish West coast was composed of 66 algal taxa (48 red algae, 7 green algae, 11 brown algae). The red algae Gelidium spinosum and Rhodothamniella floridula were the only epibionts associated with H. indistincta for the whole annual cycle. Most of the algal epibionts were filamentous species, which colonized the surface of the sponge and did not penetrate deeply into it. The algal assemblage was most abundant and species-diverse in the period late winter-spring; multivariate analyses revealed a significant variation of the community on the temporal scale of season and sampling date (weeks to months). The results indicate that the algal communities associated with sponges may be very diverse, showing that this type of assemblage deserves further detailed studies. © 2012 Elsevier B.V.
Resumo:
A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.
Resumo:
Many wildlife studies use chemical analyses to explore spatio-temporal variation in diet, migratory patterns and contaminant exposure. Intrinsic markers are particularly valuable for studying non-breeding marine predators, when direct methods of investigation are rarely feasible. However, any inferences regarding foraging ecology are dependent upon the time scale over which tissues such as feathers are formed. In this study, we validate the use of body feathers for studying non-breeding foraging patterns in a pelagic seabird, the northern fulmar. Analysis of carcasses of successfully breeding adult fulmars indicated that body feathers moulted between September and March, whereas analyses of carcasses and activity patterns suggested that wing feather and tail feather moult occurred during more restricted periods (September to October and September to January, respectively). By randomly sampling relevant body feathers, average values for individual birds were shown to be consistent. We also integrated chemical analyses of body feather with geolocation tracking data to demonstrate that analyses of δ13C and δ15N values successfully assigned 88 % of birds to one of two broad wintering regions used by breeding adult fulmars from a Scottish study colony. These data provide strong support for the use of body feathers as a tool for exploring non-breeding foraging patterns and diet in wide-ranging, pelagic seabirds.
Resumo:
Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.
Resumo:
Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34-yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land-use changes) on landscape-scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β-diversity component can mask observable patterns in the other.
We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum temperature, water-balance and growing degree-days). Shifts in landscape-scale heterogeneity, a proxy of land-use change, was summarised as a spatial multiple-site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi-model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns.
Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree-days) of temporal β-diversity were also identified, and contrasting patterns between the two β-diversity components revealed.
Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β-diversity, disentangling contrasting patterns than can mask one another.
Resumo:
Ostrea edulis was extremely rare in the wild in Strangford Lough from the early 1900s until renewed spatfall was observed at a number of sites in the 1990s. A monitoring programme was undertaken to investigate the presence and distribution of planktonic oyster larvae at nine sites around the lough between June and September in 1997 and 1998 as a precursor to studies of spatfall patterns. Larval densities at sites in the northern basin of the lough were significantly higher than those in the southern basin where larvae were lacking or in low numbers. Densities and sizes of oyster larvae showed significant temporal variation suggesting pulsed larval release. Larval densities also showed significant spatial variation with higher densities at sites closer to commercial stocks pointing to these as the main source of oyster larvae. This hypothesis was supported during a larval flux study over a complete tidal cycle which indicated a 90% net tidal movement of O. edulis larvae from the entrance of the bay where commercial stocks were held to the main body of the lough. Thus the maintenance of dense commercial stocks of flat oysters may provide the key to the redevelopment of native oyster beds in Strangford Lough and elsewhere by providing an initial broodstock nucleus from which larvae can be exported.
Resumo:
The fundamental controls on the initiation and development of gravel-dominated deposits (beaches and barriers) on paraglacial coasts are particle size and shape, sediment supply, storm wave activity (primarily runup), relative sea-level (RSL) change, and terrestrial basement structure (primarily as it affects accommodation space). This paper examines the stochastic basis for barrier organisation as shown by variation in gravel barrier architecture. We recognise punctuated self-organisation of barrier development that is disrupted by short phases of barrier instability. The latter results from positive feedback causing barrier breakdown when sediment supply is exhausted. We examine published typologies for gravel barriers and advocate a consolidated perspective using rate of RSL change and sediment supply. We also consider the temporal variation in controls on barrier development. These are examined in terms of a simple behavioural model (BARCH) for prograding gravel barrier architecture and its sensitivity to such controls. The nature of macroscale (102–103 years) gravel barrier development, including inherited characteristics that influence barrier genesis, as well as forcing from changing RSL, sediment supply, headland control and barrier inertia, is examined in the context of long-surviving barriers along the southern England coastline.
Resumo:
A new application of wavelet analysis is presented that utilizes the inherent phase information residing within the complex Morlet transform. The technique is applied to a weak solar magnetic network region, and the temporal variation of phase difference between TRACE 1700 Angstrom and SOHO/SUMER C II 1037 Angstrom intensities is shown. We present, for the first time in an astrophysical setting, the application of wavelet phase coherence, including a comparison between two methods of testing real wavelet phase coherence against that of noise. The example highlights the advantage of wavelet analysis over more classical techniques, such as Fourier analysis, and the effectiveness of the former to identify wave packets of similar frequencies but with differing phase relations is emphasized. Using cotemporal, ground-based Advanced Stokes Polarimeter measurements, changes in the observed phase differences are shown to result from alterations in the magnetic topology.
Resumo:
What if the traditional relationship between touch and music was essentially turned upside down, making the tactile sensation the aesthetic end? This paper presents a novel coupling of haptics technology and music, introducing the notion of tactile composition or aesthetic composition for the sense of touch. A system that facilitates the composition and perception of intricate, musically structured spatio-temporal patterns of vibration on the surface of the body is described. Relevant work from disciplines including sensory substitution, electronic musical instrument design, simulation design, entertainment technology, and visual music is considered. The psychophysical parameter space for our sense of touch is summarized and the building blocks of a compositional language for touch are explored. A series of concerts held for the skin and ears is described, as well as some of the lessons learned along the way. In conclusion, some potential evolutionary branches of tactile composition are posited.
Resumo:
The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 10(9) V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.
Resumo:
Changes of the electron dynamics during the mode transition (E- to H-mode) in a hydrogen radio-frequency (rf) inductively coupled plasma are investigated using space and phase resolved optical emission spectroscopy. The E- mode is characterized through relatively weak optical emission which is strongly modulated on a nanosecond time scale during the rf-cycle, with one pronounced maximum per cycle. The modulation in H-mode, with twice the rf-frequency, is significantly weaker while the emission intensities are about two orders of magnitude higher. In particular the transition between these two modes is studied under variations of rf-power input and gas pressure. Characteristic spatio-temporal structures are observed and can be understood in the frame of a simple model combining both coupling mechanisms in the transition regime.