153 resultados para Somatostatin analogues
Resumo:
Somatostatin-14 elicits negative inotropic and chronotropic actions in atrial myocardium. Less is known about the effects of somatostatin-14 in ventricular myocardium. The direct contractile effects of somatostatin-14 were assessed using ventricular cardiomyocytes isolated from the hearts of adult rats. Cells were stimulated at 0.5 Hz with CaCl2 (2 mM) under basal conditions and in the presence of the -adrenoceptor agonist, isoprenaline (1 nM), or the selective inhibitor of the transient outward current (Ito), 4-aminopyridine (500 M). Somatostatin-14 did not alter basal contractile response but it did inhibit (IC50 13 nM) the response to isoprenaline (1 nM). In the presence of 4-aminopyridine (500 M), somatostatin-14 stimulated a positive contractile response (EC50 118 fM) that was attenuated markedly by diltiazem (100 nM). These data indicate that somatostatin-14 exerts dual effects directly in rat ventricular cardiomyocytes: (1) a negative contractile effect, observed in the presence of isoprenaline (1 nM), coupled to activation of Ito; and (2) a previously unreported and very potent positive contractile effect, unmasked by 4-aminopyridine (500 M), coupled to the influx of calcium ions via L-type calcium channels. The greater potency of somatostatin-14 for producing the positive contractile effect indicates that the peptide may exert a predominantly stimulatory influence on the resting contractility of ventricular myocardium in vivo, whereas the negative contractile effect, observed at much higher concentrations, could indicate that localized elevations in the concentration of the peptide may serve as a negative regulatory influence to limit the detrimental effects of excessive stimulation of cardiomyocyte contractility.
Resumo:
Antimicrobial peptides play an important role in host defence, particularly in the oral cavity where there is constant challenge by microorganisms. The a-defensin antimicrobial peptides comprise 30–50% of the total protein in the azurophilic granules of human neutrophils, the most abundant of which is human neutrophil peptide 1 (HNP-1). Despite its antimicrobial activity, a limiting factor in the potential therapeutic use of HNP-1 is its chemical synthesis with the correct disulphide topology. In the present study, we synthesised a range of truncated defensin analogues lacking disulphide bridges. All the analogues were modelled on the C-terminal region of HNP-1 and their antimicrobial activity was tested against a range of microorganisms, including oral pathogens. Although there was variability in the antimicrobial activity of the truncated analogues synthesised, a truncated peptide named 2Abz23S29 displayed a broad spectrum of antibacterial activity, effectively killing all the bacterial strains tested. The finding that truncated peptides, modelled on the C-terminal ß-hairpin region of HNP-1 but lacking disulphide bridges, display antimicrobial activity could aid their potential use in therapeutic interventions.
Resumo:
The incretin hormones glucagon-like peptide-I (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are physiological gut peptides with insulin-releasing and extrapancreatic glucoregulatory actions. Incretin analogues/mimetics activate GLP-I or GIP receptors whilst avoiding physiological inactivation by dipeptidyl peptidase 4 (DPP-4), and they represent one of the newest classes of antidiabetic drug. The first clinically approved GLP-1 mimetic for the treatment of type-2 diabetes is exenatide (Byetta/exendin) which is administered subcutaneously twice daily. Clinical trials of liraglutide, a GLP-1 analogue suitable for once-daily administration, are ongoing. A number of other incretin molecules are at earlier stages of development. This review discusses the various attributes of GLP-1 and GIP for diabetes treatment and summarises current clinical data. Additionally, it explores the therapeutic possibilities offered by preclinical agents, such as non-peptide GLP-1 mimetics, GLP-1/glucagon hybrid peptides, and specific GIP receptor antagonists.