20 resultados para Soil - Phosphorus asorption
Resumo:
In this study the fate of naphthalene, fluorene and pyrene were investigated in the presence and absence of enchytraeid worms. Microcosms were used, which enabled the full fate of 14C-labelled PAHs to be followed. Between 60 and 70% of naphthalene was either mineralised or volatilised, whereas over 90% of the fluorene and pyrene was retained within the soil. Mineralisation and volatilisation of naphthalene was lower in the presence of enchytraeid worms. The hypothesis that microbial mineralisation of naphthalene was limited by enchytraeids because they reduce nutrient availability, and hence limit microbial carbon turnover in these nutrient poor soils, was tested. Ammonia concentrations increased and phosphorus concentrations decreased in all microcosms over the 56 d experimental period. The soil nutrient chemistry was only altered slightly by enchytraeid worms, and did not appear to be the cause of retardation of naphthalene mineralisation. The results suggest that microbial availability and volatilisation of naphthalene is altered as it passes through enchytraeid worms due to organic material encapsulation. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Uptake kinetics of arsenate were determined in arsenate tolerant and non-tolerant clones of the grass Deschampsia cespitosa under differing root phosphorus status to investigate the mechanism controlling the suppression of arsenate influx observed in tolerant clones. Influx was always lower in tolerants compared to non-tolerants. Short term influx of arsenate by the high affinity uptake system in both tolerant clones was relatively insensitive to root phosphorus status. This was in contrast to the literature where the regulation of the phosphate (arsenate) uptake system is normally much more responsive to plant phosphorus status. The low affinity uptake system in both tolerant and non-tolerant clones, unlike the high affinity uptake system, was more closely regulated by root phosphate status and was repressed to a much greater degree under increasing root phosphorus levels than the high affinity system. © 1994 Kluwer Academic Publishers.
Resumo:
Biomass and phosphorus allocation were determined in arsenate tolerant and non-tolerant clones of the grass Holcus lanatus L. in both solution culture and in soil. Arsenate is a phosphate analogue and is taken up by the phosphate uptake system. Tolerance to arsenate in this grass is achieved by suppression of arsenate (and phosphate) influx. When clones differing in their arsenate tolerance were grown in solution culture with a range of phosphate levels, a tolerant clone did not fare as well as a non-tolerant at low levels of phosphate nutrition in that it had reduced shoot biomass production, increased biomass allocation to the roots and lower shoot phosphorus concentration. At a higher level of phosphate nutrition there was little or no difference in these parameters, suggesting that differences at lower levels of phosphate nutrition were due solely to differences in the rates of phosphate accumulation. In experiments in sterile soil (potting compost) the situation was more complicated with tolerant plants having lower growth rates but higher phosphorus concentrations. The gene for arsenate tolerance is polymorphic in arsenate uncontaminated populations. When phosphorus concentration of tolerant phenotypes was determined in one such population, again tolerants had a higher phosphorus status than non-tolerants. Tolerants also had higher rates of vesicular-arbuscular mycorrhizal (VAM) infection. The ecological implications of these results are that it appears that suppression of the high affinity uptake system, is at least in part, compensated by increased mycorrhizal infection. © 1994 Kluwer Academic Publishers.
Resumo:
Velvetgrass (Holcus lanatus L.), also known as Yorkshire fog grass, has evolved tolerance to high levels of arsenate, and this adaptation involves reduced accumulation of arsenate through the suppression of the high affinity phosphate-arsenate uptake system. To determine the role of P nutrition in arsenate tolerance, inhibition kinetics of arsenate influx by phosphate were determined. The concentration of inhibitor required to reduce maximum influx (V(max)) by 50%, K1, of phosphate inhibition of arsenate influx was 0.02 mol m-3 in both tolerant and nontolerant clones. This was compared with the concentration where influx is 50% of maximum, a K(m), for arsenate influx of 0.6 mol m-3 for tolerants and 0.025 mol m-3 for nontolerants and, therefore, phosphate was much more effective at inhibiting arsenate influx in tolerant genotypes. The high affinity phosphate uptake system is inducible under low plant phosphate status, this increasing plant phosphate status should increase tolerance by decreasing arsenate influx. Root extension in arsenate solutions of tolerant and nontolerant tillers grown under differing phosphate nutritional regimes showed that indeed, increased plant P status increased the tolerance to arsenate of both tolerant and nontolerant clones. That plant P status increased tolerance again argues that P nutrition has a critical role in arsenate tolerance. To determine if short term flux and solution culture studies were relevant to As and P accumulation in soils, soil and plant material from a range of As contaminated sites were analyzed. As predicted from the short-term competition studies, P was accumulated preferentially to As in arsenate tolerant clones growing on mine spoil soils even when acid extractable arsenate in the soils was much greater than acid extractable phosphate. Though phosphate was much more efficient at competing with arsenate for uptake, plants growing on arsenate contaminated land still accumulated considerable amounts of As. Plants from the differing habitats showed large variation in plant phosphate status, pasture plants having much higher P levels than plants growing on the most contaminated mine spoil soils. The selectivity of the phosphate-arsenate uptake system for phosphate compared with arsenate, coupled with the suppression of this uptake system enabled tolerant clones of the grass velvetgrass to grow on soils that were highly contaminated with arsenate and deficient in phosphate.
Resumo:
Prominent theories of plant defence have predicted that plants growing on nutrient-poor soils produce more phenolic defence compounds than those on richer soils. Only recently has the Protein Competition Model (PCM) of phenolic allocation suggested that N and P limitation could have different effects because the nutrients are involved in different cellular metabolic processes. 2. We extend the prediction of the PCM and hypothesize that N will have a greater influence on the production of phenolic defensive compounds than P availability, because N limitation reduces protein production and thus competition for phenylalanine, a precursor of many phenolic compounds. In contrast, P acts as a recyclable cofactor in these reactions, allowing protein and hence phenolic production to continue under low P conditions. 3. We test this hypothesis by comparing the foliar concentrations of phenolic compounds in (i) phenotypes of 21 species growing on P-rich alluvial terraces and P-depleted marine terraces in southern New Zealand, and (ii) 87 species growing under similar climates on comparatively P-rich soils in New Zealand vs. P-depleted soils in Tasmania. 4. Foliar P concentrations of plants from the marine terraces were about half those of plants from alluvial soils, and much lower in Tasmania than in New Zealand. However, foliar concentrations of N and phenolic compounds were similar across sites in both comparisons, supporting the hypothesis that N availability is a more important determinant of plant investment in phenolic defensive compounds than P availability. We found no indication that reduced soil P levels influenced plant concentrations of phenolic compounds. There was wide variation in the foliar N and P concentrations among species, and those with low foliar nutrient concentrations produced more phenolics (including condensed tannins). 5. Our study is the first trait comparison extending beyond standard leaf economics to include secondary metabolites related to defence in forest plants, and emphasizes that N and P have different influences on the production of phenolic defence compounds. © 2009 British Ecological Society.