25 resultados para Sociomoral environment
Resumo:
A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle qubits that are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.
Resumo:
Some non-classical properties such as squeezing, sub-Poissonian photon statistics or oscillations in photon-number distributions may survive longer in a phase-sensitive environment than in a phase-insensitive environment. We examine if entanglement, which is an inter-mode non-classical feature, can also survive longer in a phase-sensitive environment. Differently from the single-mode case, we find that making the environment phase-sensitive does not aid in prolonging the inter-mode non-classical nature, i.e. entanglement.
Resumo:
Spectroscopic analyses of 7 SMC B-type supergiants and 1 giant have been undertaken using high resolution optical data obtained on the VLT with UVES. FASTWIND, a non-LTE, spherical, line-blanketed model atmosphere code was used to derive atmospheric and wind parameters of these stars as well as their absolute abundances. Mass-loss rates, derived from H-alpha profiles, are in poor agreement with metallicity dependent theoretical predictions. Indeed the wind-momenta of the SMC stars appear to be in good agreement with the wind-momentum luminosity relationship (WLR) of Galactic B-type stars, a puzzling result given that line-driven wind theory predicts a metallicity dependence. However the galactic stars were analysed using unblanketed model atmospheres which may mask any dependence on metallicity. A mean nitrogen enhancement of a factor of 14 is observed in the supergiants whilst only an enrichment of a factor of 4 is present in the giant, AV216. Similar excesses in nitrogen are observed in O-type dwarfs and supergiants in the same mass range, suggesting that the additional nitrogen is produced while the stars are still on the main-sequence. These nitrogen enrichments can be reproduced by current stellar evolution models, which include rotationally induced mixing, only if large initial rotational velocities of 300 kin s(-1) are invoked. Such large rotational velocities appear to be inconsistent with observed v sin i distributions for O-type stars and B-type supergiants. Hence it is suggested that the currently available stellar evolution models require more efficient mixing for lower rotational velocities.
Resumo:
A voluminous literature exists on the analysis of water-soluble ions extracted from gypsum crusts and patinas formed on building surfaces. However, less data is available on the intermediate dust layer and the important role its complex matrix and constituents play in crust/patina formation. To address this issue, surface dust samples were collected from two buildings in the city of Budapest. Substrate properties, different pollution levels and environmental variations were considered by collecting samples from a city centre granite building exposed to intense traffic conditions and from an oolitic limestone church situated in a pedestrian area outside and high above the main pollution zone. Selective extraction examines both water-soluble ions (Ca2+, Mg2+, Na+, K+, Cl-, NO3- SO42-) and selected elements (Fe, Mn, Zn, Cu, Cr, Pb, Ni) from the water-soluble, exchangeable/carbonate, amorphous Mn, amorphous Fe/Mn, crystalline Fe/Mn, organic and residual phases, their mobility and potential to catalyse heterogeneous surface reactions. Salt weathering processes are highlighted by high concentrations of water-soluble Ca2+, Na+, Cl- and SO42-- at both sites. Manganese, Zn and Cu and to a lesser extent Pb and Ni, are very mobile in the city centre dust, where 30%, 54%, 38%, 11% and 11% of their totals are bound by the water-soluble phase, respectively. Church dust shows a sharp contrast for Mn, Zn, Cu and Pb with only 3%, 1%, 12% and 3% of their totals being bound by the water-soluble phase respectively. This may be due to (a) different environmental conditions at the church e.g. lower humidity (b) continuous replenishment of salts under intensive city centre traffic conditions (c) enrichment in oxidisable organic carbon by a factor of 4.5 and a tenfold increase in acidity in the city centre dust.
Resumo:
The utilization of the computational Grid processor network has become a common method for researchers and scientists without access to local processor clusters to avail of the benefits of parallel processing for compute-intensive applications. As a result, this demand requires effective and efficient dynamic allocation of available resources. Although static scheduling and allocation techniques have proved effective, the dynamic nature of the Grid requires innovative techniques for reacting to change and maintaining stability for users. The dynamic scheduling process requires quite powerful optimization techniques, which can themselves lack the performance required in reaction time for achieving an effective schedule solution. Often there is a trade-off between solution quality and speed in achieving a solution. This paper presents an extension of a technique used in optimization and scheduling which can provide the means of achieving this balance and improves on similar approaches currently published.