41 resultados para Smith, Absalom Wamsley, 1840-1904
Resumo:
Fire has long been recognized as an agent of rock weathering. Our understanding of the impact of fire on stone comes either from early anecdotal evidence, or from more recent laboratory simulation studies, using furnaces to simulate the effects of fire. This paper suggests that knowledge derived from simulated heating experiments is based on the preconceptions of the experiment designer – when using a furnace to simulate fire, the operator decides on the maximum temperature and the duration of the experiment. These are key factors in determining the response of the stone to fire, and if these are removed from realworld observations then knowledge based on these simulations must be questioned. To explore the differences between heating sandstone in a furnace and a real fire, sample blocks of Peakmoor Sandstone were subjected to different stress histories in combination (lime rendering and removal, furnace heating or fire, frost and salt weathering). Block response to furnace heating and fire is discussed, with emphasis placed on the non-uniformity of the fire and of block response to fire in contrast to the uniform response to surface heating in a furnace. Subsequent response to salt weathering (by a 10% solution of sodium chloride and magnesium sulphate) was then monitored by weight loss. Blocks that had experienced fire showed a more unpredictable response to salt weathering than those that had undergone furnace heating – spalling of corners and rapid catastrophic weight loss were evidenced in blocks that had been subjected to fire, after periods of relative quiescence. An important physical side-effect of the fire was soot accumulation, which created a waxy, relatively impermeable layer on some blocks. This layer repelled water and hindered salt ingress, but eventually detached when salt, able to enter the substrate through more permeable areas, concentrated and crystallized behind it, resulting in rapid weight loss and accelerated decay. Copyright ©2007 John Wiley & Sons, Ltd.
Resumo:
This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.
Resumo:
James Anderson's powerful critique of Adam Smith's position on the corn export bounty was published in 1777. It focuse d on Smith's proposition that the bounty could not lead to increased corn production because it could not increase corn's real price. Smit h's response to the critique is traced in later editions of Wealth of Nations. While Anderson's critique of Smith influenced Thomas Malthu s's writings from 1803 onwards, his theory of differential rent did n ot influence Malthus at this stage. An examination of the evolution o f Malthus's ideas on rent between 1803 and 1815, however, indicates t hat Malthus knew and used Anderson's work on rent.
Resumo:
This research characterizes the weathering of natural building stone using an unsteady-state portable probe permeameter. Variations between the permeability properties of fresh rock and the same rocks after the early stages of a salt weathering simulation are used to examine the effects of salt accumulation on spatial variations in surface rock permeability properties in two limestones from Spain. The Fraga and Tudela limestones are from the Ebro basin and are of Miocene age. Both stone types figure largely in the architectural heritage of Spain and, in common with many other building limestones, they are prone to physical damage from salt crystallization in pore spaces. To examine feedbacks associated with salt accumulation during the early stages of this weathering process, samples of the two stone types were subjected to simulated salt weathering under laboratory conditions using magnesium sulphate and sodium chloride at concentrations of 5% and 15%. Permeability mapping and statistical analysis (aspatial statistics and spatial prediction) before and after salt accumulation are used to assess changes in the spatial variability of permeability and to correlate these changes with salt movement, porosity change, potential rock deterioration and textural characteristics. Statistical analyses of small-scale permeability measurements are used to evaluate the drivers for decay and hence aid the prediction of the weathering behaviour of the two limestones.
Resumo:
This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone.
Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles.
Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the scale of a single block surface, with initial small-scale differences across a surface having larger scale consequences as weathering progresses.
After cycle 10, group B blocks show a much smaller increase in mean permeability, and the range stays relatively steady — this may be explained by the capillary conditions set up by the smaller volume of the stone, allowing salts to migrate to the ‘back’ of the blocks and effectively relieving stress at the ‘front’ face.
Resumo:
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’.This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular,it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration,but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.
Resumo:
Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stone- work primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest rela- tive humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been trig- gered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygro- scopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic opera- tional historic structures.
Resumo:
The aim of this article is to provide an exploration how the work of two theorists with notably different stances could be used effectively to enhance critical research methods in relation to the history of child welfare social work. The design and implementation of child welfare policies, practices and discourses could considerably benefit from a more historically well grounded scholarship that enables actors to connect their present concerns with the broader historical dynamics of social regulation. The article reports on how the work of Michel Foucault and Dorothy E. Smith might be considered in parallel as two different perspectives to the same scene in time and place. The differences and similarities in their approaches are explored with an emphasis on concepts most relevant to researching child welfare archives including discourse, text, the subject and power-knowledge. The article concludes with a commentary on further development to take forward this methodological analysis.
Resumo:
Many previous studies into internal temperature gradients within stone have assumed smooth, exponential increases and decreases in sub-surface temperatures in response, for example, to diurnal patterns of heating and cooling and these have been used to explain phenomena such as large-scale contour scaling. This high-resolution experimental study, in which a porous limestone block was subjected to alternate surface heating and cooling using an infrared lamp, demonstrates that internal temperature gradients in response to short-term environmental cycles (measured in minutes) can in fact be complex and inconsistent. Results confirm the significance of very steep temperature/stress gradients within the outer 10 mm or less of exposed stone. Below this the data indicate complex patterns of temperature reversals, the amplitudes of which are attenuated with depth and which are influenced in their intensity and location by variations in the relative duration of heating and cooling phases. It is suggested that the reversals might represent ‘interference patterns’ between incoming and outgoing thermal waves, but whatever their origin they are potentially important because they occur within the zone in which many stone decay processes, especially salt weathering, operate. These processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example, trigger these fluctuations on numerous occasions over a day. In particular, the reversals occur at a scale that is commensurate with decay by multiple flaking and could indicate an underlying control on this previously little-researched pattern of weathering. In the context of this publication, however, the main lesson to be learned from this study is that differing scales of behaviour require different scales of enquiry.
Resumo:
Data are reported demonstrating the potential role of microscale morphologies, induced by endolithic lichen communities, specifically Verrucaria baldensis, in the initiation and development of mesoscale solution basin formation on limestone in the Burren, Co. Clare. A biophysical model is proposed outlining the different microscale stages leading to solution basin initiation with a progression from initial lichen colonisation and growth, associated biopitting followed by biopit coalescence to form biotroughs, their subsequent enlargement and eventual incipient solution basin formation. This model provides one explanation for solution basin development as this end state may also be achieved through simple solutional means without biological input. The complexity of interactions at the rock / lichen interface are identified with emphasis on the spatial and temporal variability of these underlining the point that, as with macro-topographies at the landscape scale, rock surface micro-topographies also reflect historical weathering legacies.