35 resultados para Smartphone, Hybrid application, Worklight, Sencha, REST, Push notification
Resumo:
One of the outstanding issues in parallel computing is the selection of task granularity. This work proposes a solution to the task granularity problem by lowering the overhead of the task scheduler and as such supporting very fine-grain tasks. Using a combination of static (compile-time) scheduling and dynamic (run-time) scheduling, we aim to make scheduling decisions as fast as with static scheduling while retaining the dynamic load- balancing properties of fully dynamic scheduling. We present an example application and discuss the requirements on the compiler and runtime system to realize hybrid static/dynamic scheduling.
Resumo:
This paper evaluates the viability of user-level software management of a hybrid DRAM/NVM main memory system. We propose an operating system (OS) and programming interface to place data from within the user application. We present a profiling tool to help programmers decide on the placement of application data in hybrid memory systems. Cycle-accurate simulation of modified applications confirms that our approach is more energy-efficient than state-of-the- art hardware or OS approaches at equivalent performance. Moreover, our results are validated on several candidate NVM technologies and a wide set of 14 benchmarks.
The key observation behind this work is that, for the work- loads we evaluated, application objects are too short-lived to motivate migration. Utilizing this property significantly reduces the hardware complexity of hybrid memory systems.
Resumo:
We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.
Resumo:
Ultracold hybrid ion–atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the ${\rm Y}{{{\rm b}}^{+}}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes; ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm Yb}(6{{{\rm s}}^{2}}{{\;}^{1}}{\rm S})+{\rm R}{{{\rm b}}^{+}}(4{{{\rm p}}^{6}}{{\;}^{1}}{\rm S})+h\nu $ and ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm YbR}{{{\rm b}}^{+}}({{X}^{1}}{{\Sigma }^{+}})+h\nu $. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion–atom collisions dominates cold ion–atom collisions. For spin-dependent processes [1] the anisotropic magnetic dipole–dipole interaction and the second-order spin–orbit coupling can play important roles, inducing coupling between the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately five orders of magnitude higher than the charge-exchange collision rate [1]. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.
Resumo:
The demand for sustainable development has resulted in a rapid growth in wind power worldwide. Despite various approaches have been proposed to improve the accuracy and to overcome the uncertainties associated with traditional methods, the stochastic and variable nature of wind still remains the most challenging issue in accurately forecasting wind power. This paper presents a hybrid deterministic-probabilistic method where a temporally local ‘moving window’ technique is used in Gaussian Process to examine estimated forecasting errors. This temporally local Gaussian Process employs less measurement data while faster and better predicts wind power at two wind farms, one in the USA and the other in Ireland. Statistical analysis on the results shows that the method can substantially reduce the forecasting error while more likely generate Gaussian-distributed residuals, particularly for short-term forecast horizons due to its capability to handle the time-varying characteristics of wind power.
Resumo:
The transport sector is considered to be one of the most dependent sectors on fossil fuels. Meeting ecological, social and economic demands throughout the sector has got increasingly important in recent times. A passenger vehicle with a more environmentally friendly propulsion system is the hybrid electric vehicle. Combining an internal combustion engine and an electric motor offers the potential to reduce carbon dioxide emissions. The overall objective of this research is to provide an appraisal of the use of a micro gas turbine as the range extender in a plug-in hybrid electric vehicle. In this application, the gas turbine can always operate at its most efficient operating point as its only requirement is to recharge the battery. For this reason, it is highly suitable for this purpose. Gas turbines offer many benefits over traditional internal combustion engines which are traditionally used in this application. They offer a high power-to-weight ratio, multi-fuel capability and relatively low emission levels due to continuous combustion.
Resumo:
Increasingly large amounts of data are stored in main memory of data center servers. However, DRAM-based memory is an important consumer of energy and is unlikely to scale in the future. Various byte-addressable non-volatile memory (NVM) technologies promise high density and near-zero static energy, however they suffer from increased latency and increased dynamic energy consumption.
This paper proposes to leverage a hybrid memory architecture, consisting of both DRAM and NVM, by novel, application-level data management policies that decide to place data on DRAM vs. NVM. We analyze modern column-oriented and key-value data stores and demonstrate the feasibility of application-level data management. Cycle-accurate simulation confirms that our methodology reduces the energy with least performance degradation as compared to the current state-of-the-art hardware or OS approaches. Moreover, we utilize our techniques to apportion DRAM and NVM memory sizes for these workloads.
Resumo:
Even though computational power used for structural analysis is ever increasing, there is still a fundamental need for testing in structural engineering, either for validation of complex numerical models or material behaviour. Many structural engineers/researchers are aware of cyclic and shake table test methods, but less so hybrid testing. Over the past 40 years, hybrid testing of engineering structures has developed from concept through to maturity to become a reliable and accurate dynamic testing technique. In particular, the application of hybrid testing as a seismic testing technique in recent years has increased notably. The hybrid test method provides users with some additional benefits that standard dynamic testing methods do not, and the method is much more cost effective in comparison to shake table testing. This paper aims to provide the reader with a basic understanding of the hybrid test method and its potential as a dynamic testing technique.
Resumo:
Farmed fish are typically genetically different from wild conspecifics. Escapees from fish farms may contribute one-way gene flow from farm to wild gene pools, which can depress population productivity, dilute local adaptations and disrupt coadapted gene complexes. Here, we reanalyse data from two experiments (McGinnity et al., 1997, 2003) where performance of Atlantic salmon (Salmo salar) progeny originating from experimental crosses between farm and wild parents (in three different cohorts) were measured in a natural stream under common garden conditions. Previous published analyses focussed on group-level differences but did not account for pedigree structure, as we do here using modern mixed-effect models. Offspring with one or two farm parents exhibited poorer survival in their first and second year of life compared with those with two wild parents and these group-level inferences were robust to excluding outlier families. Variation in performance among farm, hybrid and wild families was generally similar in magnitude. Farm offspring were generally larger at all life stages examined than wild offspring, but the differences were moderate (5–20%) and similar in magnitude in the wild versus hatchery environments. Quantitative genetic analyses conducted using a Bayesian framework revealed moderate heritability in juvenile fork length and mass and positive genetic correlations (>0.85) between these morphological traits. Our study confirms (using more rigorous statistical techniques) previous studies showing that offspring of wild fish invariably have higher fitness and contributes fresh insights into family-level variation in performance of farm, wild and hybrid Atlantic salmon families in the wild. It also adds to a small, but growing, number of studies that estimate key evolutionary parameters in wild salmonid populations. Such information is vital in modelling the impacts of introgression by escaped farm salmon.
Resumo:
A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding.
Resumo:
The ability of an agent to make quick, rational decisions in an uncertain environment is paramount for its applicability in realistic settings. Markov Decision Processes (MDP) provide such a framework, but can only model uncertainty that can be expressed as probabilities. Possibilistic counterparts of MDPs allow to model imprecise beliefs, yet they cannot accurately represent probabilistic sources of uncertainty and they lack the efficient online solvers found in the probabilistic MDP community. In this paper we advance the state of the art in three important ways. Firstly, we propose the first online planner for possibilistic MDP by adapting the Monte-Carlo Tree Search (MCTS) algorithm. A key component is the development of efficient search structures to sample possibility distributions based on the DPY transformation as introduced by Dubois, Prade, and Yager. Secondly, we introduce a hybrid MDP model that allows us to express both possibilistic and probabilistic uncertainty, where the hybrid model is a proper extension of both probabilistic and possibilistic MDPs. Thirdly, we demonstrate that MCTS algorithms can readily be applied to solve such hybrid models.
Resumo:
This paper is concerned with the application of an automated hybrid approach in addressing the university timetabling problem. The approach described is based on the nature-inspired artificial bee colony (ABC) algorithm. An ABC algorithm is a biologically-inspired optimization approach, which has been widely implemented in solving a range of optimization problems in recent years such as job shop scheduling and machine timetabling problems. Although the approach has proven to be robust across a range of problems, it is acknowledged within the literature that there currently exist a number of inefficiencies regarding the exploration and exploitation abilities. These inefficiencies can often lead to a slow convergence speed within the search process. Hence, this paper introduces a variant of the algorithm which utilizes a global best model inspired from particle swarm optimization to enhance the global exploration ability while hybridizing with the great deluge (GD) algorithm in order to improve the local exploitation ability. Using this approach, an effective balance between exploration and exploitation is attained. In addition, a traditional local search approach is incorporated within the GD algorithm with the aim of further enhancing the performance of the overall hybrid method. To evaluate the performance of the proposed approach, two diverse university timetabling datasets are investigated, i.e., Carter's examination timetabling and Socha course timetabling datasets. It should be noted that both problems have differing complexity and different solution landscapes. Experimental results demonstrate that the proposed method is capable of producing high quality solutions across both these benchmark problems, showing a good degree of generality in the approach. Moreover, the proposed method produces best results on some instances as compared with other approaches presented in the literature.
Resumo:
Free-roaming dogs (FRD) represent a potential threat to the quality of life in cities from an ecological, social and public health point of view. One of the most urgent concerns is the role of uncontrolled dogs as reservoirs of infectious diseases transmittable to humans and, above all, rabies. An estimate of the FRD population size and characteristics in a given area is the first step for any relevant intervention programme. Direct count methods are still prominent because of their non-invasive approach, information technologies can support such methods facilitating data collection and allowing for a more efficient data handling. This paper presents a new framework for data collection using a topological algorithm implemented as ArcScript in ESRI® ArcGIS software, which allows for a random selection of the sampling areas. It also supplies a mobile phone application for Android® operating system devices which integrates Global Positioning System (GPS) and Google Maps™. The potential of such a framework was tested in 2 Italian regions. Coupling technological and innovative solutions associated with common counting methods facilitate data collection and transcription. It also paves the way to future applications, which could support dog population management systems.
Resumo:
Spectroscopic studies of line emission intensities and ratios offer an attractive option in the\r\ndevelopment of non-invasive plasma diagnostics. Evaluating ratios of selected He I line\r\nemission profiles from the singlet and triplet neutral helium spin systems allows for simultaneous\r\nmeasurement of electron density (ne) and temperature (Te) profiles. Typically, this powerful\r\ndiagnostic tool is limited by the relatively long relaxation times of the 3S metastable term of helium\r\nthat populates the triplet spin system, and on which electron temperature sensitive lines are based.\r\nBy developing a time dependent analytical solution, we model the time evolution of the two spin\r\nsystems. We present a hybrid time dependent/independent line ratio solution that improves the\r\nrange of application of this diagnostic technique in the scrape-off layer (SOL) and edge plasma\r\nregions when comparing it against the current equilibrium line ratio helium model used at\r\nTEXTOR.
Resumo:
As the number of high profile cases of institutional child abuse mounts internationally, and the demands of victims for justice are heard, state responses have ranged from prosecution, apology, and compensation schemes, to truth commissions or public inquiries. Drawing on the examples of Australia and Northern Ireland as two jurisdictions with a recent and ongoing history of statutory inquiries into institutional child abuse, the article utilises the restorative justice paradigm to critically evaluate the strengths and limitations of the inquiry framework in providing ‘justice’ for victims. It critically explores the normative and pragmatic implications of a hybrid model as a more effective route to procedural justice and suggests that an appropriately designed restorative pathway may augment the legitimacy and utility of the public inquiry model for victims chiefly via improving offender accountability and ‘voice’ for victims. The article concludes by offering some thoughts on the broader implications for other jurisdictions in responding to large-scale historical abuses and seeking to come to terms with the legacy of institutional child abuse.