43 resultados para Single-electron transport
Resumo:
The amplitude modulation of ion-acoustic waves IS investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrodinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (mu), for a given value of the hot-to-cold electron density ratio (nu): favors instability. The role of the ion temperature is also discussed. In the limiting case nu = 0 (or nu -> infinity). which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.
Resumo:
Accurate fine-structure atomic data for the Fe-peak elements are essential for interpreting astronomical spectra. There is a severe paucity of data available for Sc II, highlighted by the fact that no collision strengths are readily available for this ion. We present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for Sc II. The collision strengths were calculated for all 3916 transitions amongst 89 jj levels (arising from the 3d4s, 3d2, 4s2, 3d4p, 4s4p, 3d5s, 3d4d, 3d5p, 4p2 and 3d4f configurations), resulting in a 944 coupled channel problem. The R-matrix package RMATRXII was utilized, along with the transformation code FINE and the external region code PSTGF, to calculate the collision strengths for a range of incident electron energies in the 0 to 8.3 Rydberg region. Maxwellian averaged effective collision strengths were then produced for 27 temperatures lying within the astrophysically significant range of 30 to 105 K.
The collision strengths and effective collision strengths were produced for two different target models. The purpose was to systematically examine the effect of including open 3p correlation terms into the configuration interaction expansion for the wavefunction. The first model consisted of all 36 CI terms that could be generated with the 3p core closed. The second model incorporated an additional six configurations which allowed for single-electron excitations from within the 3p core. Comparisons are made between the two models and the results of Bautista et al., obtained by private communication. It is concluded that the first model produced the most reliable set of collision and effective collision strengths for use in astrophysical and plasma applications.
Resumo:
A theoretical and numerical study of fast electron transport in solid and compressed fast ignition relevant targets is presented. The principal aim of the study is to assess how localized increases in the target density (e. g., by engineering of the density profile) can enhance magnetic field generation and thus pinching of the fast electron beam through reducing the rate of temperature rise. The extent to which this might benefit fast ignition is discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729322]
Resumo:
Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.
Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.
Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.
Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
Experimental and theoretical studies of one-electron capture in collisions of He2+ ions with H2O molecules have been carried out in the range 0.025-12 keV amu(-1) corresponding to typical solar wind velocities of 70-1523 km s(-1). Translational energy spectroscopy (TES), photon emission spectroscopy (PES), and fragment ion spectroscopy were employed to identify and quantify the collision mechanisms involved. Cross sections for selective single electron capture into n=1, 2, and 3 states of the He+ ion were obtained using TES while PES provided cross sections for capture into the He+(2p) and He+(3p) states. Our model calculations show that He+(n=2) and He+(n=3) formation proceeds via a single-electron process governed by the nucleus-electron interaction. In contrast, the He+(1s) formation mechanism involves an exothermic two-electron process driven by the electron-electron interaction, where the potential energy released by the electron capture is used to remove a second electron thereby resulting in fragmentation of the H2O molecule. This process is found to become increasingly important as the collision energy decreases. The experimental cross sections are found to be in reasonable agreement with cross sections calculated using the Demkov and Landau-Zener models.
Resumo:
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.
Resumo:
Tunnel ionization of room-temperature D-2 in an ultrashort (12 femtosecond) near infrared (800 nm) pump laser pulse excites a vibrational wavepacket in the D-2(+) ions; a rotational wavepacket is also excited in residual D-2 molecules. Both wavepacket types are collapsed a variable time later by an ultrashort probe pulse. We isolate the vibrational wavepacket and quantify its evolution dynamics through theoretical comparison. Requirements for quantum computation (initial coherence and quantum state retrieval) are studied using this well-defined (small number of initial states at room temperature, initial wavepacket spatially localized) single-electron molecular prototype by temporally stretching the pump and probe pulses.
Resumo:
Eppin has two potential protease inhibitory domains: a whey acid protein or four disulfide core domain and a Kunitz domain. The protein is also reported to have antibacterial activity against Gram-negative bacteria. Eppin and its whey acid protein and Kunitz domains were expressed in Escherichia coli and their ability to inhibit proteases and kill bacteria compared. The Kunitz domain inhibits elastase (EC 3.4.21.37) to a similar extent as intact eppin, whereas the whey acid protein domain has no such activity. None of these fragments inhibits trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1) at the concentrations tested. In a colony forming unit assay, both domains have some antibacterial activity against E. coli, but this was not to the same degree as intact eppin or the two domains together. When bacterial respiratory electron transport was measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, eppin and its domains caused an increase in the rate of respiration. This suggests that the mechanism of cell killing may be partly through the permeablization of the bacterial inner membrane, resulting in uncoupling of respiratory electron transport and consequent collapse of the proton motive force. Thus, we conclude that although both of eppin’s domains are involved in the protein’s antibacterial activity, only the Kunitz domain is required for selective protease inhibition.
Resumo:
We present results of wavepacket simulations for multiphoton ionization in argon. A single active electron model is applied to estimate the single-electron ionization rates and photoelectron energy distributions for lambda = 390 nm light with intensities up to I = 2 x 10(14) W cm(-2). The multiphoton ionization rates are compared with R-matrix Floquet calculations and found to be in very good agreement. The photoelectron energy distribution is used to study the nature of ionization at the higher intensities. Our results are consistent with recent calculations and experiments which show the imprint of the tunnelling process in the multiphoton regime. For few-cycle intense pulses, we find that the strong modulation of intensity and increased bandwidth leads to dynamic mixing of the 3d and 5s resonances.
Resumo:
NO (nitric oxide) can affect mitochondrial function by interacting with the cytochrome c oxidase (complex IV) of the electron transport chain in a manner that is reversible and in competition with oxygen. Concentrations of NO too low to inhibit respiration can trigger cell defence response mechanisms involving reactive oxygen species and various signalling molecules such as nuclear factor kappa B and AMP kinase. Inhibition of mitochondrial respiration by NO at low oxygen concentrations can cause so-called metabolic hypoxia and divert oxygen towards other oxygen-dependent systems. Such a diversion reactivates prolyl hydroxylases and thus accounts for the prevention by NO of the stabilization of hypoxia-inducible transcription factor. In certain circumstances NO interacts with superoxide radical to form peroxynitrite, which can affect the action of key enzymes, such as mitochondrial complex I, by S-nitrosation. This chapter discusses the physiological and pathophysiological implications of the interactions of NO with the cytochrome c oxidase.
Resumo:
The mechanism of energy converting NADH:ubiquinone oxidoreductase (complex 1) is Still unknown. A current controversy centers around the question whether electron transport of complex I is always linked to vectorial proton translocation or whether in some organisms the enzyme pumps sodium ions instead. To develop better experimental tools to elucidate its mechanism, we have reconstituted the affinity purified enzyme into proteoliposomes and monitored the generation of Delta pH and Delta psi. We tested several detergents to solubilize the asolectin used for liposome formation. Tightly coupled proteoliposomes containing highly active complex I were obtained by detergent removal with BioBeads after total solubilization or the phospholipids with n-octyl-beta-D-glucopyranoside. We have used dyes to monitor the formation of the two components of the proton motive force, Delta pH and Delta psi, across the liposomal membrane, and analyzed the effects of inhibitors, uncouplers and ionophores on this process. We show that electron transfer of complex I of the lower eukaryote Y. lipolytica is clearly linked to proton translocation. While this study was not specifically designed to demonstrate possible additional sodium translocating properties of complex 1, we did not find indications for primary or secondary Na+ translocation by Y lipolytica complex I. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have observed the simultaneous inner-shell absorption of two extreme-ultraviolet photons by a Xe atom in an experiment performed at the short-wavelength free electron laser facility FLASH. Photoelectron spectroscopy permitted us to unambiguously identify a feature resulting from the ionization of a single electron of the 4d subshell of Xe by two photons each of energy (93 +/- similar to 1) eV. The feature's intensity has a quadratic dependence on the pulse energy. The results are discussed and interpreted within the framework of recent results of ion spectroscopy experiments of Xe obtained at ultrahigh irradiance in the extreme-ultraviolet regime.
TiK alpha radiography of Cu-doped plastic microshell implosions via spherically bent crystal imaging
Resumo:
We show that short pulse laser generated Ti K alpha radiation can be used effectively as a backlighter for radiographic imaging. This method of x-ray radiography features high temporal and spatial resolution, high signal to noise ratio, and monochromatic imaging. We present here the Ti K alpha backlit images of six-beam driven spherical implosions of thin-walled 500-mu m Cu-doped deuterated plastic (CD) shells and of similar implosions with an included hollow gold cone. These radiographic results were used to define conditions for the diagnosis of fast ignition relevant electron transport within imploded Cu-doped coned CD shells. (c) 2005 American Institute of Physics.
Resumo:
We have developed a PW (0.5 ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature.