25 resultados para Siglos XIV-XVI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like Si XII, He-like Si XIII and H-like Si XIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of Si XII, 49 levels of Si XIII and 25 levels of Si XIV, belonging to the n≤5 configurations. Collision strengths have been averaged over a Maxwellian electron velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 107 K. Comparisons have been made with similar data obtained from the flexible atomic code (fac) to highlight the importance of resonances, included in calculations from darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for weak transitions and at low energies, are also discussed. Additionally, lifetimes are listed for all calculated levels of the above three ions, although no measurements are available with which to compare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates and electron impact excitation cross
sections and rates for transitions in He-like Cl XVI, K XVIII, Ca XIX and Sc XX. The grasp
(general-purpose relativistic atomic structure package) is adopted for calculating energy levels
and radiative rates. To determine the collision strengths and subsequently the excitation rates,
the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line
strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of
each ion. Collision strengths are averaged over a Maxwellian velocity distribution and the
effective collision strengths obtained listed over a wide temperature range up to 107.4 K.
Comparisons are made with similar data obtained from the flexible atomic code (fac) to
highlight the importance of resonances, included in calculations with darc, in the
determination of effective collision strengths. Discrepancies between the collision strengths
from darc and fac, particularly for forbidden transitions, are also discussed. Additionally,
theoretical lifetimes are listed for all the 49 levels of the above four ions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fe unresolved transition arrays (UTAs) produce prominent features in the 15-17 Å wavelength range in the spectra of active galactic nuclei (AGNs). Here, we present new calculations of the energies and oscillator strengths of inner-shell lines from Fe XIV, Fe XV, and Fe XVI. These are crucial ions since they are dominant at inflection points in the gas thermal stability curve, and UTA excitation followed by autoionization is an important ionization mechanism for these species. We incorporate these, and data reported in previous papers, into the plasma simulation code Cloudy. This updated physics is subsequently employed to reconsider the thermally stable phases in absorbing media in AGNs. We show how the absorption profile of the Fe XIV UTA depends on density, due to the changing populations of levels within the ground configuration. © 2013. The American Astronomical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energies and lifetimes are reported for the lowest 136 levels of Fe XIV, belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p, 3s(3)p(2), 3s(2)3d, 3p(3), 3s(3)p(3)d, 3p(2)3d, 3s(3)d(2), 3p(3)d(2) and 3s(2)4l configurations. Additionally, radiative rates, oscillator strengths and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions. Theoretical lifetimes determined from these radiative rates for most levels show satisfactory agreement with earlier calculations, a swell as with measurements. Electron impact excitation collision strengths are also calculated with the Dirac atomic R-matrix code (DARC) over a wide energy range up to 260 Ryd. Furthermore, resonances have been resolved in a fine energy mesh to determine effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities. Results are listed for all 9180 transitions among the 136 levels over a wide range of electron temperatures, up to 10(7.1) K. Comparisons are made with available results in the literature, and the accuracy of the present data is assessed.