95 resultados para Siegel Modular Forms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a study aimed at determining the most important experimental parameters for automated, quantitative analysis of solid dosage form pharmaceuticals (seized and model 'ecstasy' tablets) are reported. Data obtained with a macro-Raman spectrometer were complemented by micro-Raman measurements, which gave information on particle size and provided excellent data for developing statistical models of the sampling errors associated with collecting data as a series of grid points on the tablets' surface. Spectra recorded at single points on the surface of seized MDMA-caffeine-lactose tablets with a Raman microscope (lambda(ex) = 785 nm, 3 mum diameter spot) were typically dominated by one or other of the three components, consistent with Raman mapping data which showed the drug and caffeine microcrystals were ca 40 mum in diameter. Spectra collected with a microscope from eight points on a 200 mum grid were combined and in the resultant spectra the average value of the Raman band intensity ratio used to quantify the MDMA: caffeine ratio, mu(r), was 1.19 with an unacceptably high standard deviation, sigma(r), of 1.20. In contrast, with a conventional macro-Raman system (150 mum spot diameter), combined eight grid point data gave mu(r) = 1.47 with sigma(r) = 0.16. A simple statistical model which could be used to predict sigma(r) under the various conditions used was developed. The model showed that the decrease in sigma(r) on moving to a 150 mum spot was too large to be due entirely to the increased spot diameter but was consistent with the increased sampling volume that arose from a combination of the larger spot size and depth of focus in the macroscopic system. With the macro-Raman system, combining 64 grid points (0.5 mm spacing and 1-2 s accumulation per point) to give a single averaged spectrum for a tablet was found to be a practical balance between minimizing sampling errors and keeping overhead times at an acceptable level. The effectiveness of this sampling strategy was also tested by quantitative analysis of a set of model ecstasy tablets prepared from MDEA-sorbitol (0-30% by mass MDEA). A simple univariate calibration model of averaged 64 point data had R-2 = 0.998 and an r.m.s. standard error of prediction of 1.1% whereas data obtained by sampling just four points on the same tablet showed deviations from the calibration of up to 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of dinuclear (bipyridine)tricarbonylrhenium(I) and tris(bipyridine)ruthenium(II) complexes have been isolated and characterised, bridged by a flexible diamido ethylene glycol chain. A new stepwise synthetic pathway has been investigated to heterometallic complexes, with the rhenium(I) complexes exhibiting an unusual configuration and inequivalence of the metal centres potentially arising from a surprising hydrogen-bonding interaction between an Re–CO group and an amide proton in low-polarity solvents. This interaction appears to be broken by competing hydrogen-bonding species such as dihydrogen phosphate. This effect was not observed in the corresponding ruthenium(II) complexes, which showed very little interaction with anions. The photophysical characterisation shows that the inclusion of two ester/amide groups to the rhenium centre effectively quenches the fluorescence at room temperature. The ruthenium(II) complexes have considerably stronger fluorescence than the rhenium species, and are less affected by theinclusion of ester and amide groups to the 2,2'-bipyridine chelating group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we verify a new phase conjugating architecture suitable for deployment as (lie core building block in retrodirective antenna arrays, which can be scaled to any number of elements in a modular way without impacting on complexity. Our solution is based on a modified in-phase and quadrature modulator architecture, which completely resolves four major shortcomings of the conventional mixer-based approach currently used for the synthesis of phase conjugated energy derived from a sampled incoming wavefront. 1) The architecture presented removes the need for a local oscillator running at twice the RF signal frequency to be conjugated. 2) It maintains a constant transmit power even if receive power goes as low as -120 dBm. 3) All unwanted re-transmit signal products are suppressed by at least 40 dB. 4) The issue of poor RF-IF leakage prevalent in mixer-based phase-conjugation solutions is completely mitigated. The circuit has also been shown to have high conjugation accuracy (better than +/-1 degrees at -60-dBm input). Near theoretically perfect experimental monostatic and bistatic results are presented for a ten-element retrodirective array constructed using the new phase conjugation architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It seems plausible that children with atopy and persistent asthma symptoms will, like their adult counterparts, have chronic airways inflammation. However, many young children with no other atopic features have episodic wheezing that is triggered solely by viral respiratory infections. Little is known as to whether airways inflammation occurs in these two asthma patterns during relatively asymptomatic periods.

Methods: Using a non-bronchoscopic bronchoalveolar lavage (BAL) procedure on children presenting for an elective surgical procedure, this study has investigated the cellular constituents of BAL fluid in children with a history of atopic asthma (AA) non-asthmatic atopic children (NAA) or viral associated wheeze (VAW).

Results: A total of 95 children was studied: 52 with atopic asthma (8.0 years, range 1.1-15.3, 36 male), 23 with non-asthmatic atopy (median age 8.3 years, range 1.7-13.6, 11 male) and 20 with VAW (3.1 years, range 1.0-8.2, 13 male). No complications were observed during the lavage procedure and no adverse events were noted post-operatively. Total lavage fluid recovered was similar in all groups and the total cell numbers were higher in the VAW group. Eosinophil (P< 0.005) and mast cell (/'<0.05) numbers were significantly elevated in the group with atopic asthma.

Conclusions: During relatively asymptomatic periods there is on-going airways inflammation, as demonstrated by eosinophil and mast cell recruitment, in children with asthma and atopy but not in children with viral associated wheeze or atopy alone. This strongly suggests that there are different underlying pathophysiologicai mechanisms in these two groups of children who wheeze.