19 resultados para Shunt


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: To evaluate the long-term outcome of aqueous shunts in the treatment of infantile glaucoma refractory to conventional treatment. PATIENTS AND METHODS: The records of all patients up to 3 years of age managed with aqueous shunts for uncontrolled glaucoma between November 1990 and November 1996 were retrospectively reviewed. Ten eyes of 6 patients were included in the study. RESULTS: The mean preoperative intraocular pressure (IOP) was 29.75 ± 4.15 (mm Hg; SD), with none of the eyes on antiglaucoma medication. Postoperatively, the mean IOP was 18.25 ± 5.34 (mm Hg; SD) at a mean follow up of 50 ± 25.6 (SD) months with 7 eyes on topical antiglaucoma medication. At the final follow up, 6 eyes were considered successfully controlled without reintervention, 2 more were controlled after shunt revision, and 2 were considered failures. CONCLUSIONS: Aqueous shunts were relatively effective in this series of infants with recalcitrant glaucoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the design, implementation, and characterization of a new type of passive power splitting and combining structure for use in a differential four-way power-combining amplifier operating at E-band. In order to achieve lowest insertion loss, input and output coils inductances are resonated with shunt capacitances. Simple C-L-C and L-C networks are proposed in order to compensate inductive loading due to routing line that would otherwise introduce mismatch and increase loss. Across 78-86 GHz band, measured insertion loss is about 7 dB. Measured return losses are >10 dB from 73 GHz to 94 GHz at the input port and >9 dB from 60 GHz to 94 GHz at the output port. When integrated with driver and power amplifier cells, the simulated complete circuit exhibits 18.2 dB gain and 20.3 dBm saturated output power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently introduced Class-EF power amplifier (PA) has a peak switch voltage lower than that of the Class-E PA. However, the value of the transistor output capacitance at high frequencies is typically larger than the required Class-EF optimum shunt capacitance. Consequently, soft-switching operation that minimizes power dissipation during off-to-on transition cannot be achieved at high frequencies. Two new Class-EF PA variants with transmission-line load networks, namely, third-harmonic-peaking (THP) and fifth-harmonic-peaking (FHP) Class-EF PAs are proposed in this paper. These permit operation at higher frequencies at no expense to other PA figures of merit. Analytical expressions are derived in order to obtain circuit component values, which satisfy the required Class-EF impedances at fundamental frequency, all even harmonics, and the first few odd harmonics as well as simultaneously providing impedance matching to a 50- Ω load. Furthermore, a novel open-circuit and shorted stub arrangement, which has substantial practical benefits, is proposed to replace the normal quarter-wave line connected at the transistor's drain. Using GaN HEMTs, two PA prototypes were built. Measured peak drain efficiency of 91% and output power of 39.5 dBm were obtained at 2.22 GHz for the THP Class-EF PA. The FHP Class-EF PA delivered output power of 41.9 dBm with 85% drain efficiency at 1.52 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of the operation of a new series-L/parallel-tuned Class-E amplifier and its equivalence to the classic shunt-C/series-tuned Class-E amplifier are presented. The first reported closed form design equations for the series-L/parallel-tuned topology operating under ideal switching conditions are given, including the switch current and voltage in steady state, the circuit component values, the peak values of switch current and voltage and the power-output capability. Theoretical analysis is confirmed by numerical simulation for a 500 mW (27 dBm), 10% bandwidth, 5 V series-L/parallel-tuned, then, shunt-C/series-tuned Class-E power amplifier, operating at 2.5 GHz. Excellent agreement between theory and simulation results is achieved.