111 resultados para Serial correlation
Resumo:
The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.
Resumo:
A joint theoretical-experimental study of the transfer ionization process p + He -> H-0 + He2+ + e(-) is presented. For the first time all particles in the final state have been detected in triple coincidence. This fully differential measurement is in good agreement with a theoretical model where the target is described by a wavefunction containing both radial and angular correlation terms.
Resumo:
Background: Hip protectors are protective pads designed to cover the greater trochanter and attenuate or disperse the force of a fall sufficiently to prevent a hip fracture. Promising results from randomised controlled trials in nursing homes have resulted in hip protectors being widely recommended in the health care literature and in national guidelines. Objectives: The objectives of the study were to identify characteristics of individual residents, and the organisational features of the homes in which they live, which may affect adherence to wearing hip protectors. Design: An observational, correlation study designed to identify factors related to adherence. Setting: Forty nursing and residential homes in the UK. Participants: 1346 residents of the homes who were not confined to bed and with no pressure sore on the hip. Methods: The introduction of an evidence-based policy to offer Safehips hip protectors to residents free of charge and with support from a nurse facilitator. Adherence to wearing the hip protectors was observed over 72 weeks. Results: Initial acceptance of the hip protectors was 37.2%. Continued adherence was 23.9% at 24 weeks; 23.2% at 48 weeks; and 19.9% at 72 weeks. Greater adherence was associated with the following individual resident characteristics: a greater degree of dependency (95% CI 1.39 - m3.78) and cognitive impairment (95% CI 1.01 - 2.98); being male rather than female (95% CI 1.06 - 2.48). Greater adherence was also associated with the following organisational characteristics of homes: fewer changes of senior manager during the study period (95% CI 1.01 - 8.51), and being resident in a home with a resident profile showing a greater proportion of residents with a higher degree of dependency (95% CI 1.04 - 1.27). There was wide a variation in the degree of success in implementation between homes (adherence of 0 - 100% at 24 weeks). Conclusions: Those implementing a policy of introducing hip protectors into nursing and residential homes should consider targeting residents with cognitive impairment. Such residents are at greater risk of hip fracture and appear to be more likely to continue wearing hip protectors. Those charged with implementing changes inpractice or policy should consider how the context for implementation can be optimised to increase the likelihood of success.
Resumo:
Ab initio nonlocal pseudopotential variational quantum Monte Carlo techniques are used to compute the correlation effects on the valence momentum density and Compton profile of silicon. Our results for this case are in excellent agreement with the Lam-Platzman correction computed within the local density approximation. Within the approximations used, we rule out valence electron correlations as the dominant source of discrepancies between calculated and measured Compton profiles of silicon.
Resumo:
An artificial neural network (ANN) model is developed for the analysis and simulation of the correlation between the properties of maraging steels and composition, processing and working conditions. The input parameters of the model consist of alloy composition, processing parameters (including cold deformation degree, ageing temperature, and ageing time), and working temperature. The outputs of the ANN model include property parameters namely: ultimate tensile strength, yield strength, elongation, reduction in area, hardness, notched tensile strength, Charpy impact energy, fracture toughness, and martensitic transformation start temperature. Good performance of the ANN model is achieved. The model can be used to calculate properties of maraging steels as functions of alloy composition, processing parameters, and working condition. The combined influence of Co and Mo on the properties of maraging steels is simulated using the model. The results are in agreement with experimental data. Explanation of the calculated results from the metallurgical point of view is attempted. The model can be used as a guide for further alloy development.
Resumo:
Ionic liquids (ILs) have attracted large amount of interest due to their unique properties. Although large effort has been focused on the investigation of their potential application, characterization of ILs properties and structure–property relationships of ILs are poorly understood. Computer aided molecular design (CAMD) of ionic liquids (ILs) can only be carried if predictive computational methods for the ILs properties are available. The limited availability of experimental data and their quality have been preventing the development of such tools. Based on experimental surface tension data collected from the literature and measured at our laboratory, it is here shown how a quantitative structure–property relationship (QSPR) correlation for parachors can be used along with an estimation method for the densities to predict the surface tensions of ILs. It is shown that a good agreement with literature data is obtained. For circa 40 ionic liquids studied a mean percent deviation (MPD) of 5.75% with a maximum deviation inferior to 16% was observed. A correlation of the surface tensions with the molecular volumes of the ILs was developed for estimation of the surface tensions at room temperature. It is shown that it can describe the experimental data available within a 4.5% deviation. The correlations here developed can thus be used to evaluate the surface tension of ILs for use in process design or in the CAMD of new ionic liquids.