109 resultados para Semantic Error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe evidence that certain inductive phenomena are associated with IQ, that different inductive phenomena emerge at different ages, and that the effects of causal knowledge on induction are decreased under conditions of memory load. On the basis of this evidence we argue that there is more to inductive reasoning than semantic cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we provide experimental evidence to show that enhanced bit error rate (BER) performance is possible using a retrodirective array operating in a dynamically varying multipath environment. The operation of such a system will be compared to that obtained by a conventional nonretrodirective array. The ability of the array to recover amplitude shift keyed encoded data transmitted from a remote location whose position is not known a priori is described. In addition, its ability to retransmit data inserted at the retrodirective array back to a spatially remote beacon location whose position is also not known beforehand is also demonstrated. Comparison with an equivalent conventional fixed beam antenna array utilizing an identical radiating aperture arrangement to that of the retrodirective array are given. These show that the retrodirective array can effectively exploit the presence of time varying multipath in order to give significant reductions in BER over what can be otherwise achieved. Additionally, the retrodirective system is shown to be able to deliver low BER regardless of whether line of sight is present or absent.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the role of visual feedback of task performance in visuomotor adaptation. Participants produced novel two degrees of freedom movements (elbow flexion-extension, forearm pronation-supination) to move a cursor towards visual targets. Following trials with no rotation, participants were exposed to a 60A degrees visuomotor rotation, before returning to the non-rotated condition. A colour cue on each trial permitted identification of the rotated/non-rotated contexts. Participants could not see their arm but received continuous and concurrent visual feedback (CF) of a cursor representing limb position or post-trial visual feedback (PF) representing the movement trajectory. Separate groups of participants who received CF were instructed that online modifications of their movements either were, or were not, permissible as a means of improving performance. Feedforward-mediated performance improvements occurred for both CF and PF groups in the rotated environment. Furthermore, for CF participants this adaptation occurred regardless of whether feedback modifications of motor commands were permissible. Upon re-exposure to the non-rotated environment participants in the CF, but not PF, groups exhibited post-training aftereffects, manifested as greater angular deviations from a straight initial trajectory, with respect to the pre-rotation trials. Accordingly, the nature of the performance improvements that occurred was dependent upon the timing of the visual feedback of task performance. Continuous visual feedback of task performance during task execution appears critical in realising automatic visuomotor adaptation through a recalibration of the visuomotor mapping that transforms visual inputs into appropriate motor commands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of computer-based devices for music control has created a need to study how spectators understand new performance technologies and practices. As a part of a larger project examining how interactions with technology can be communicated to spectators, we present a model of a spectator's understanding of error by a performer. This model is broadly applicable throughout HCI, as interactions with technology are increasingly public and spectatorship is becoming more common.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsatellite genotyping is a common DNA characterization technique in population, ecological and evolutionary genetics research. Since different alleles are sized relative to internal size-standards, different laboratories must calibrate and standardize allelic designations when exchanging data. This interchange of microsatellite data can often prove problematic. Here, 16 microsatellite loci were calibrated and standardized for the Atlantic salmon, Salmo salar, across 12 laboratories. Although inconsistencies were observed, particularly due to differences between migration of DNA fragments and actual allelic size ('size shifts'), inter-laboratory calibration was successful. Standardization also allowed an assessment of the degree and partitioning of genotyping error. Notably, the global allelic error rate was reduced from 0.05 ± 0.01 prior to calibration to 0.01 ± 0.002 post-calibration. Most errors were found to occur during analysis (i.e. when size-calling alleles; the mean proportion of all errors that were analytical errors across loci was 0.58 after calibration). No evidence was found of an association between the degree of error and allelic size range of a locus, number of alleles, nor repeat type, nor was there evidence that genotyping errors were more prevalent when a laboratory analyzed samples outside of the usual geographic area they encounter. The microsatellite calibration between laboratories presented here will be especially important for genetic assignment of marine-caught Atlantic salmon, enabling analysis of marine mortality, a major factor in the observed declines of this highly valued species.