19 resultados para Sels de pyridinium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid charge-transfer (CT) complexes were observed to form on contacting electron-rich aromatics with electron withdrawing group appended 1-alkyl-4-cyanopyridinium ionic liquids (ILs). Cooling below the melting point of the ionic liquid resulted in crystallisation of ionic liquid from the complex for 2-cyano and 3-cyano pyridinium isomers and in the formation of a 1 : 1 IL : aromatic crystalline CT-complex with the 4-cyanopyridinium isomer. The liquid structure of a 1 : 1 mixture of 1-methyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl} imide with 1-methylnaphthalene has been probed by neutron diffraction experiments and molecular dynamics simulations. A high degree of correlation between the experimental data and the simulations was found with a significant displacement of the anions from around the cation by the aromatic species and the resulting structure having pi-pi stacks between the cations and the aromatic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutron diffraction has been used to investigate the liquid structure of a 1:2 solution of phenol in the ionic liquid N-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide at 60 ◦C, using the empirical potential structure refinement (EPSR) process to model the data obtained from the SANDALS diffractometer at ISIS. Addition of phenol results in suppression of the melting point of the pyridinium salt and formation of a room temperature solution with aromatic phenol–cation and phenol-OH to anion hydrogen-bonding interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionalised pyridinium and ammonium ionic liquids bearing a Michael acceptor are shown to scavenge H2S gas and various thiols, in most cases, without the aid of any added bases. Utilising the effective non-volatility of ionic liquids and ‘tagging’ malodourous substances to an ionic matrix renders them odourless.



Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invention relates to a process for dissolving metals (e.g., Al, Cu, Fe, Cr, Sb, Ti, and W) in perhalide contg. ionic liqs. having the formula (I), and to the extn. of metals from mineral ores; the remediation of materials contaminated with heavy, toxic, or radioactive metals; and to the removal of heavy and toxic metals from hydrocarbon streams. In the formula (I), [X] comprises at least one perhalide anion selected from [I3]-, [BrI2]-, [Br2I]-, [ClI2]-, [ClBr2]-, [BrCl2]-, or [ICl2]-, [ClI3]-. The (Cat+) is a cationic species selected from: ammonium, azaannulenium, azathiazolium, benzimidazolium, benzofuranium, benzotriazolium, borolium, cinnolinium, diazabicyclodecenium, diazabicyclononenium, diazabicyclo- undecenium, dithiazolium, furanium, guanidinium, imidazolium, indazolium, indolinium, indolium, morpholinium, oxaborolium, oxaphospholium, oxazinium, oxazolium, iso-oxazolium, oxathiazolium, pentazolium, phospholium, phosphonium, phthalazinium, piperazinium, piperidinium, pyranium, pyrazinium, pyrazolium, pyridazinium, pyridinium, pyrimidinium, pyrrolidinium, pyrrolium, quinazolinium, quinolinium, isoquinolinium, quinoxalinium, selenozolium, sulfonium, tetrazolium, iso-thiadiazolium, thiazinium, thiazolium, thiophenium, thiuronium, triazadecenium, triazinium, triazolium, iso-triazolium, and uronium. [on SciFinder(R)]