17 resultados para Seasonal variations (Economics)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To investigate seasonal variation in month of diagnosis in children with type 1 diabetes registered in EURODIAB centres during 1989-2008.
Methods: 23 population-based registers recorded date of diagnosis in new cases of clinically diagnosed type 1 diabetes in children aged under 15 years. Completeness of ascertainment was assessed through capture-recapture methodology and was high in most centres. A general test for seasonal variation (11df) and Edward's test for sinusoidal (sine wave) variation (2df) were employed. Time series methods were also used to investigate if meteorological data were predictive of monthly counts after taking account of seasonality and long term trends.
Results: Significant seasonal variation was apparent in all but two small centres, with an excess of cases apparent in the winter quarter. Significant sinusoidal pattern was also evident in all but two small centres with peaks in December (14 centres), January (5 centres) or February (2 centres). Relative amplitude varied from ±11% to ±39% (median ±18%). There was no relationship across the centres between relative amplitude and incidence level. However there was evidence of significant deviation from the sinusoidal pattern in the majority of centres. Pooling results over centres, there was significant seasonal variation in each age-group at diagnosis, but with significantly less variation in those aged under 5 years. Boys showed marginally greater seasonal variation than girls. There were no differences in seasonal pattern between four sub-periods of the 20 year period. In most centres monthly counts of cases were not associated with deviations from normal monthly average temperature or sunshine hours; short term meteorological variations do not explain numbers of cases diagnosed.
Conclusions: Seasonality with a winter excess is apparent in all age-groups and both sexes, but girls and the under 5s show less marked variation. The seasonal pattern changed little in the 20 year period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (T). We measured core body temperature (T) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily T provided the greatest explanatory power for mean T whereas sunrise had greatest power for T acrophase. There were significant changes in mean T and T acrophase over time with mean T increasing and T acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in T, sometimes in excess of 5°C, were noted during the first hour post emergence, after which T remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to 'offload' heat. In addition, greater T amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their T-T gradient. Finally, there were significant effects of age and group size on T with a lower and less variable T in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile T which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment.