56 resultados para Science education
Resumo:
Science based news is widely reported in the media. The ability to interact critically with such news reports is increasingly seen as a legitimate part of the science education agenda. This paper reports the findings of two studies looking at the early response and subsequent usage of a resource promoting the integration of science-based news in secondary science curriculum in Northern Ireland. This paper charts the introduction of the resource into schools. The subsequent impact on the science curriculum and the implications for teacher professional development are considered. Many science teachers demonstrate willingness and aptitude to use primary media sources within their teaching. Some who adopted the resource demonstrate the capacity to sustain the development using the resource as a catalyst in ongoing curricular change. Insights gained in this study are relevant to policy makers and curriculum developers as well as teachers seeking to promote this aspect of science education
Resumo:
Worldwide, science education reform is aiming to promote 'scientific literacy' among young people. Typically, this is taken to include empowering them to engage critically with science in news media. This study explored the extent and nature of secondary science teachers' use of newspapers. It found that, though a great many use the resource, the majority do so incidentally and with the intention of showing the relevance of the subject rather than developing their students' criticality.
Resumo:
The growing visibility of various forms of creationism in Northern Ireland raises issues for science education. Attempts have been made at political levels to have such “alternatives” to evolution taught in the science classroom, and the issue has received coverage in local press and media. A sample of 112 pre-service science teachers answered a survey on attitudes toward evolution. Preliminary analysis revealed many of these new teachers held views contrary to scientific consensus—over one fifth doubt the evidence for human evolution, and over one quarter dispute the common ancestry of life. Over two thirds indicated a preference for teaching a “range of theories” regarding these issues in science. In addition, 49 pre-service biology teachers viewed a DVD resource promoting “intelligent design” and completed an evaluation of it. The biology teachers also took part in either focus groups or additional questionnaires. A majority took the resource at face value and made positive comments regarding its utility. Many articulated views contrary to the stated positions of science academies, professional associations, and the UK government teaching directives regarding creationism. Most indicated a perception that intelligent design is legitimate science and that there is a scientific “controversy” regarding the legitimacy of evolution. Concern is raised over the ability of these new teachers to distinguish between scientific and non-scientific theories. The suggestion is made that the issue should be addressed directly with pre-service science teachers to make clear the status of such “alternatives.” The paper raises implications for science education and questions for further research.
Resumo:
Research into student teachers' perceptions, attitudes and prior experiences of learning suggests that these experiences can exert an influence on practice which can be relatively undisturbed by their initial teacher education. This article is based on the initial findings of an all-Ireland survey of all first-year students on B.Ed. courses in colleges in Northern Ireland and in the Republic of Ireland. The survey is the first stage in a longitudinal study which will follow the same cohort of students for the duration of their initial teacher education, seeking to map and track the development of their ideas about teaching and learning in primary history, geography and science. Based on an analysis of the quantitative data in the entry questionnaire, the initial findings suggest that subject knowledge remains a problematic issue in initial teacher education and that both location and gender interact with knowledge, attitudes and subject area to produce a complex and challenging context for teacher educators in history, geography and science education.
Resumo:
A recognised aim of science education is to promote critical engagement with science in the media. Evidence would suggest that this is challenging for both teachers and pupils and that at science education does not yet adequately prepare young people for this task. Furthermore, in the absence of clear guidance as to what this means and how this may be achieved it is difficult for teachers to develop approaches and resources that address the matter and that systematically promote such critical engagement within their teaching programmes. Twenty-six individuals with recognised expertise or interest in science in the media, drawn from a range of disciplines and areas of practice, constituted a specialist panel in this study. The question this research sought to answer was ‘what are the elements of knowledge, skill and attitude which underpin critical reading of science based news reports’? During in-depth individual interviews the panel were asked to explore what they considered to be essential elements of knowledge, skills and attitude which people need to enable them to respond critically to news reports with a science component. Analysis of the data revealed fourteen fundamental elements which together contribute to an individual’s capacity to engage critically with science-based news. These are classified in five categories ‘knowledge of science’, ‘knowledge of writing and language’, ‘knowledge about news, newspapers and journalism’, ‘skills’ and ‘attitudes’. Illustrative profiles of each category along with indicators of critical engagement are presented. The implications for curriculum planning and pedagogy are considered.
Resumo:
Science programmes which prepare students to read critically and respond thoughtfully to science-based reports in the media could play an important role in promoting informed participation in the public debate about issues relating to science, technology and society. Evidence based guidance about the practice and pattern of use of science-based media in the classroom is limited. This study sought to identify learning intentions that teachers believe ought to underpin the development of programmes of study designed to achieve this end-result. Teachers views of knowledge, skills and attitudes required to engage critically with science-based news served as a basis for this study. Teachers developed a pedagogical model by selecting appropriate statements of learning intentions, grouping these into coherent and manageable themes and coding them according to perceived level of difficulty. The model is largely compatible with current curricular provision in the UK, highlights opportunities for interdisciplinary collaboration and illustrates the developmental nature of the topic.
Resumo:
Abstract This study explored the effects that the incorporation of nature of science (NoS) activities in the primary science classroom had on children’s perceptions and understanding of science. We compared children’s ideas in four classes by inviting them to talk, draw and write about what science meant to them: two of the classes were taught by ‘NoS’ teachers who had completed an elective nature of science (NoS) course in the final year of their Bachelor of Education (B.Ed) degree. The ‘non-NoS’ teachers who did not attend this course taught the other two classes. All four teachers had graduated from the same initial teacher education institution with similar teaching grades and all had carried out the same science methods course during their B.Ed programme. We found that children taught by the teachers who had been NoS-trained developed more elaborate notions of nature of science, as might be expected. More importantly, their reflections on science and their science lessons evidenced a more in-depth and sophisticated articulation of the scientific process in terms of scientists “trying their best” and “sometimes getting it wrong” as well as “getting different answers”. Unlike children from non-NoS classes, those who had engaged in and reflected on NoS activities talked about their own science lessons in the sense of ‘doing science’. These children also expressed more positive attitudes about their science lessons than those from non-NoS classes. We therefore suggest that there is added value in including NoS activities in the primary science curriculum in that they seem to help children make sense of science and the scientific process, which could lead to improved attitudes towards school science. We argue that as opposed to considering the relevance of school science only in terms of children’s experience, relevance should include relevance to the world of science, and NoS activities can help children to link school science to science itself.