23 resultados para Scattering effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.

Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.

Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six amphiphilic star copolymers comprising hydrophilic units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and hydrophobic units of methyl methacrylate (MMA) were prepared by the sequential group transfer polymerization (GTP) of the two comonomers and ethylene glycol dimethacrylate (EGDMA) cross-linker. Four star-block copolymers of different compositions, one miktoarm star, and one statistical copolymer star were synthesized. The molecular weights (MWs) and MW distributions of all the star copolymers and their linear homopolymer and copolymer precursors were characterized by gel permeation chromatography (GPC), while the compositions of the stars were determined by proton nuclear magnetic resonance (H-1 NMR) spectroscopy. Tetrahydrofuran (THF) solutions of all the star copolymers were characterized by static light scattering to determine the absolute weight-average MW ((M) over bar (w)) and the number of arms of the stars. The R, of the stars ranged between 359,000 and 565,000 g mol(-1), while their number of arms ranged between 39 and 120. The star copolymers were soluble in acidic water at pH 4 giving transparent or slightly opaque solutions, with the exception of the very hydrophobic DMAEMA(10)-b-MMA(30)-star, which gave a very opaque solution. Only the random copolymer star was completely dispersed in neutral water, giving a very opaque solution. The effective pKs of the copolymer stars were determined by hydrogen ion titration and were found to be in the range 6.5-7.6. The pHs of precipitation of the star copolymer solutions/dispersions were found to be between 8.8-10.1, except for the most hydrophobic DMA-EMA(10)-b-MMA(30)-Star, which gave a very opaque solution over the whole pH range. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear scattering of pulses by periodic stacks of semiconductor layers with magnetic bias has been studied in the self-consistent problem formulation, taking into account mobility of carriers. The three-wave mixing technique has been applied to the analysis of the waveform evolution in the stacks illuminated by two Gaussian pulses with different central frequencies and lengths. The effects of external magnetic bias, and stack physical and geometrical parameters on the properties of the scattered waveforms are discussed. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combinatorial frequency generation by the periodic stacks of magnetically biased semiconductor layers has been modelled in a self-consistent problem formulation, taking into account the nonlinear dynamics of carriers. It is shown that magnetic bias not only renders nonreciprocity of the three-wave mixing process but also significantly enhances the nonlinear interactions in the stacks, especially at the frequencies close to the intrinsic magneto-plasma resonances of the constituent layers. The main mechanisms and properties of the combinatorial frequency generation and emission from the stacks are illustrated by the simulation results, and the effects of the individual layer parameters and the structure arrangement on the stack nonlinear and nonreciprocal response are discussed. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PtSi/Si Schottky junctions, fabricated using a conventional technique of Pt deposition with a subsequent thermal anneal, are examined using X-ray diffraction, atomic force microscopy and a novel prism/gap/sample optical coupling system. With the aid of X-ray diffraction and atomic farce microscopy it is shown that a post-anneal etch in aqua regia is essential for the removal of an unreacted, rough surface layer of Pt, to leave a much smoother PtSi film. The prism/gap/sample or Otto coupling rig is mounted in a small UHV chamber and has facilities for remote variation of the gap (by virtue of a piezoactuator system) and variation of the temperature in the range of similar to 300 K - 85 K. The system is used to excite surface plasmon polaritons on the outer surface of the PtSi and thus produce sensitive optical characterisation as a function of temperature. This is performed in order to yield an understanding of the temperature dependence of phonon and interface scattering of carriers in the PtSi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using low-energy electron-diffraction (LEED) formalism, we demonstrate theoretically that LEED I-V spectra are characterized mainly by short-range order. We also show experimentally that diffuse LEED (DLEED) I-V spectra can be accurately measured from a disordered system using a video-LEED system even at very low coverage. These spectra demonstrate that experimental DLEED I-V spectra from disordered systems may be used to determine local structures. As an example, it is shown that experimental DLEED I-V spectra from K/Co {1010BAR} at potassium coverages of 0.07, 0.1, and 0.13 monolayer closely resemble calculated and experimental LEED I-V spectra for a well-ordered Co{1010BAR}-c(2X2)-K superstructure, leading to the conclusion that at low coverages, potassium atoms are located in the fourfold-hollow sites and that there is no large bond-length change with coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combinatorial frequency generation by the periodic stacks of magnetically biased semiconductor layers has been modelled in the self-consistent problem formulation, taking into account the nonlinear dynamics of carriers. It has been shown that the nonlinear response of the magnetoactive semiconductor periodic structure is strongly enhanced by magnetic bias and combinations of the layer physical and geometrical parameters. The effects of the pump wave nonreciprocal reflectance and field displacement on the efficiency of three-wave mixing process is illustrated by the simulation results