58 resultados para Scar remodeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Unlike adult dermal wounds, the oral mucosa demonstrates preferential healing characterized by rapid remodeling and re-epithelialisation, with minimal scar formation. Secretory leukocyte protease inhibitor (SLPI) is an epithelial-derived factor with potential for promoting scarless repair. The aims of this study were to: (i) investigate the directed migratory (chemotaxis) response of oral and skin fibroblasts to various concentrations of SLPI; and (ii) compare migratory speed of the two cell types. Methods: Paired oral and skin fibroblasts were seeded at 2x104 cells in six well plates containing glass coverslips, and cultured in DMEM supplemented with 10% FCS for 48hours. Following a period of serum starvation (18hours in DMEM plus 0.5% BSA), coverslips were incorporated within a Dunn chemotaxis chamber containing DMEM with 0.5% BSA +/- SLPI gradients at 0.5, 1 or 2µM concentrations. Using microscopy, the migratory behaviour of cells was digitally captured every 10mins for 18hours, traced with JCell tracking software and resulting co-ordinates statistically analysed using Mathmatica software. Results: At all concentrations SLPI was a significant chemoattractant (p<0.01) for both cell types. However, skin fibroblasts migrated significantly faster than oral cells at each SLPI concentration, with greatest effect observed at the highest dose (skin: 32.0±0.47µm/hr, oral: 13.6±0.23µm/hr). Conclusion: SLPI is a chemoattractant for both oral and skin fibroblasts, and may play an important role in fibroblast recruitment during wound healing. This work was funded by the R&D Office, N.Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for serum amyloid P-component (SAP) to prevent cardiac remodeling and identify worsening diastolic dysfunction (DD) was investigated. The anti-fibrotic potential of SAP was tested in an animal model of hypertensive heart disease (spontaneously hypertensive rats treated with SAP [SHR - SAP] × 12 weeks). Biomarker analysis included a prospective study of 60 patients with asymptomatic progressive DD. Compared with vehicle-treated Wistar-Kyoto rats (WKY-V), the vehicle-treated SHRs (SHR-V) exhibited significant increases in left ventricular mass, perivascular collagen, cardiomyocyte size, and macrophage infiltration. SAP administration was associated with significantly lower left ventricular mass (p < 0.01), perivascular collagen (p < 0.01), and cardiomyocyte size (p < 0.01). Macrophage infiltration was significantly attenuated in the SHR-SAP group. Biomarker analysis showed significant decreases in SAP concentration over time in patients with progressive DD (p < 0.05). Our results indicate that SAP prevents cardiac remodeling by inhibiting recruitment of pro-fibrotic macrophages and that depleted SAP levels identify patients with advancing DD suggesting a role for SAP therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In asymptomatic subjects B-type natriuretic peptide (BNP) is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM) alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS) and peripheral serum from patients with low (n = 14) and high BNP (n = 27). Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001). CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008), CITP (r = 0.35, p = 0.03) and PIIINP (r = 0.35, p = 0.001), and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002), IL-6 (r = 0.35, p = 0.04), and IL-8 (r = 0.54, p<0.001). The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007), TNF-α (3.2±0.5 versus 3.7±1.1, p = 003), IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02) and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04), and greater left ventricular mass index (97±20 versus 118±26 g/m(2), p = 0.03) and left atrial volume index (18±2 versus 21±4, p = 0.008). Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the nature and biomechanical properties of collagen fibers within the human myocardium. Targeting cardiac interstitial abnormalities will likely become a major focus of future preventative strategies with regard to the management of cardiac dysfunction. Current knowledge regarding the component structures of myocardial collagen networks is limited, further delineation of which will require application of more innovative technologies. We applied a novel methodology involving combined confocal laser scanning and atomic force microscopy to investigate myocardial collagen within ex-vivo right atrial tissue from 10 patients undergoing elective coronary bypass surgery. Immuno-fluorescent co-staining revealed discrete collagen I and III fibers. During single fiber deformation, overall median values of stiffness recorded in collagen III were 37±16% lower than in collagen I [p<0.001]. On fiber retraction, collagen I exhibited greater degrees of elastic recoil [p<0.001; relative percentage increase in elastic recoil 7±3%] and less energy dissipation than collagen III [p<0.001; relative percentage increase in work recovered 7±2%]. In atrial biopsies taken from patients in permanent atrial fibrillation (n=5) versus sinus rhythm (n=5), stiffness of both collagen fiber subtypes was augmented (p<0.008). Myocardial fibrillar collagen fibers organize in a discrete manner and possess distinct biomechanical differences; specifically, collagen I fibers exhibit relatively higher stiffness, contrasting with higher susceptibility to plastic deformation and less energy efficiency on deformation with collagen III fibers. Augmented stiffness of both collagen fiber subtypes in tissue samples from patients with atrial fibrillation compared to those in sinus rhythm are consistent with recent published findings of increased collagen cross-linking in this setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis. Copyright (c) 2006 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/AIMS:
Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of the vasodilator peptide, adrenomedullin (AM) and its receptors is augmented in cardiomyocytes, indicating that the myocardial AM system may be activated in response to pressure loading and ischemic insult to serve a counter-regulatory, cardio-protective role. The study examined the hypothesis that oxidative stress and hypertrophic remodeling in NO-deficient cardiomyocytes are attenuated by adenoviral vector-mediated delivery of the human adrenomedullin (hAM) gene in vivo.

METHODS:
The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 15mg . kg(-1) . day(-1)) was given to rats for 4 weeks following systemic administration via the tail vein of a single injection of either adenovirus harbouring hAM cDNA under the control of the cytomegalovirus promoter-enhancer (Ad.CMV-hAM-4F2), or for comparison, adenovirus alone (Ad.Null) or saline. Cardiomyocytes were subsequently isolated for assessment of the influence of each intervention on parameters of oxidative stress and hypertrophic remodelling.

RESULTS: Cardiomyocyte expression of the transgene persisted for > or =4 weeks following systemic administration of adenoviral vector. In L-NAME treated rats, relative to Ad.Null or saline administration, Ad.CMV-hAM-4F2 (i) reduced augmented cardiomyocyte membrane protein oxidation and mRNA expression of pro-oxidant (p22phox) and anti-oxidant (SOD-3, GPx) genes; (ii) attenuated increased cardiomyocyte width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP) genes; (iii) did not attenuate hypertension.

CONCLUSIONS: Adenoviral vector mediated delivery of hAM resulted in attenuation of myocardial oxidative stress and hypertrophic remodelling in the absence of blood pressure reduction in this model of chronic NO-deficiency. These findings are consistent with a direct cardio-protective action in the myocardium of locally-derived hAM which is not dependant on NO generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marijuana smokers and animals treated with ?9-tetrahydrocannabinol, THC, the principal component of marijuana, show alterations of sperm morphology suggesting a role for cannabinoids in sperm differentiation and/or maturation. Since the cannabinoid receptor 1 (CNR1) activation appears to play a pivotal role in spermiogenesis, the developmental stage where DNA is remodeled, we hypothesized that CNR1 receptors might also influence chromatin quality in sperm. We used Cnr1 null mutant (Cnr1-/-) mice to study the possible role of endocannabinoids on sperm chromatin during spermiogenesis. We demonstrated that CNR1 activation regulated chromatin remodeling of spermatids by either increasing Tnp2 levels or enhancing histone displacement. Comparative analysis of WT, Cnr1+/- and Cnr1-/- animals suggested the possible occurrence of haploinsufficiency for Tnp2 turnover control by CNR1, while histone displacement was disrupted to a lesser extent. Further, flow cytometry analysis demonstrated that the genetic loss of Cnr1 decreased sperm chromatin quality and was associated with sperm DNA fragmentation. This damage increased during epididymal transit, from caput to cauda. Collectively, our results show that the expression/activity of CNR1 controls the physiological alterations of DNA structure during spermiogenic maturation and epididymal transit. Given the deleterious effects of sperm DNA damage on male fertility, we suggest that the reproductive function of marijuana users may also be impaired by deregulation of the endogenous endocannabinoid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal ischaemic disorders such as diabetic retinopathy and retinal vein occlusion are common. The hypoxia-related stimuli from oxygen-deprived neural and glial networks can drive expression of growth factors and cytokines which induce leakage from the surviving vasculature and/or pre-retinal and papillary neovascularisation. If left untreated, retinal vascular stasis, hypoxia or ischaemia can lead to macular oedema or fibro-vascular scar formation which are associated with severe visual impairment, and even blindness. Current therapies for ischaemic retinopathies include laser photocoagulation, injection of corticosteroids or VEGF-antibodies and vitreoretinal surgery, however they carry significant side effects. As an alternative approach, we propose that if reparative intra-retinal angiogenesis can be harnessed at the appropriate stage, ischaemia could be contained or reversed. This review provides evidence that reperfusion of ischaemic retina and suppression of sight-threatening sequelae is possible in both experimental and clinical settings. In particular, there is emphasis on the clinical potential for endothelial progenitor cells (EPCs) to promote vascular repair and reversal of ischaemic injury in various tissues including retina. Gathering evidence from an extensive published literature, we outline the molecular and phenotypic nature of EPCs, how they are altered in disease and provide a rationale for harnessing the vascular reparative properties of various cell sub-types. When some of the remaining questions surrounding the clinical use of EPCs are addressed, they may provide an exciting new therapeutic option for treating ischaemic retinopathies. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carried out a yeast two-hybrid screen using a BRCA1 bait composed of amino acids 1 to 1142 and identified BRD7 as a novel binding partner of BRCA1. This interaction was confirmed by coimmunoprecipitation of endogenous BRCA1 and BRD7 in T47D and HEK-293 cells. BRD7 is a bromodomain containing protein, which is a subunit of PBAF-specific Swi/Snf chromatin remodeling complexes. To determine the functional consequences of the BRCA1-BRD7 interaction, we investigated the role of BRD7 in BRCA1-dependent transcription using microarray-based expression profiling. We found that a variety of targets were coordinately regulated by BRCA1 and BRD7, such as estrogen receptor alpha (ERalpha). Depletion of BRD7 or BRCA1 in either T47D or MCF7 cells resulted in loss of expression of ERalpha at both the mRNA and protein level, and this loss of ERalpha was reflected in resistance to the antiestrogen drug fulvestrant. We show that BRD7 is present, along with BRCA1 and Oct-1, on the ESR1 promoter (the gene which encodes ERalpha). Depletion of BRD7 prevented the recruitment of BRCA1 and Oct-1 to the ESR1 promoter; however, it had no effect on the recruitment of the other Swi/Snf subunits BRG1, BAF155, and BAF57 or on RNA polymerase II recruitment. These results support a model whereby the regulation of ERalpha transcription by BRD7 is mediated by its recruitment of BRCA1 and Oct-1 to the ESR1 promoter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The hidden nature of brain injury means that it is often difficult for people to understand the sometimes challenging behaviors that individuals exhibit. The misattribution of these behaviors may lead to a lack of consideration and public censure if the individual is seen as simply misbehaving.

Objective: The aim of this study was to explore the impact of visual cues indicating the presence or absence of brain injury on prejudice, desire for social interaction, and causal attributions of nursing and computing science students.

Method: An independent-groups design was employed in this research, which recruited 190 first-year nursing students and 194 first-year computing science students from a major university in Belfast, UK. A short passage describing an adolescent’s behavior after a brain injury, together with one of three images portraying a young adolescent with a scar, a head dressing, or neither of these, was given to participants. They were then asked to answer questions relating to prejudice, social interaction, locus of control, and causal attributions. The attributional statements suggested that the character’s behavior could be the result of brain injury or adolescence.

Results: Analysis of variance demonstrated a statistically significant difference between the student groups, where nursing students (M = 45.17, SD = 4.69) desired more social interaction with the fictional adolescent than their computer science peers (M = 38.64, SD = 7.69). Further, analysis of variance showed a main effect of image on the attributional statement that described adolescence as a suitable explanation for the character’s lack of self-confidence.

Discussion: Attributions of brain injury were influenced by the presence of a visible but potentially specious indicator of injury. This suggests that survivors of brain injury who do not display any outward indicator may receive less care and face expectations to behave in a manner consistent with the norms of society. If their injury does not allow them to meet with these expectations, they may face public censure and discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension-induced left ventricular hypertrophy (LVH), along with ischemic heart disease, result in LV remodeling as part of a continuum that often leads to congestive heart failure. The neurohormonal model has been used to underpin many treatment strategies, but optimal outcomes have not been achieved. Neuropeptide Y (NPY) has emerged as an additional therapeutic target, ever since it was recognised as an important mediator released from sympathetic nerves in the heart, affecting coronary artery constriction and myocardial contraction. More recent interest has focused on the mitogenic and hypertrophic effects that are observed in endothelial and vascular smooth muscle cells, and cardiac myocytes. Of the six identified NPY receptor subtypes, Y-1, Y-2, and Y-5 appear to mediate the main functional responses in the heart. Plasma levels of NPY become elevated due to the increased sympathetic activation present in stress-related cardiac conditions. Also, NPY and Y receptor polymorphisms have been identified that may predispose individuals to increased risk of hypertension and cardiac complications. This review examines what understanding exists regarding the likely contribution of NPY to cardiac pathology. It appears that NPY may play a part in compensatory or detrimental remodeling of myocardial tissue subsequent to hemodynamic overload or myocardial infarction, and in angiogenic processes to regenerate myocardium after ischemic injury. However, greater mechanistic information is required in order to truly assess the potential for treatment of cardiac diseases using NPY-based drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-ß chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-ß, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-ß from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-ß exchange from heterochromatin, promoting DNA repair.