24 resultados para Scanning Electron Microscopic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We produced choroidal neovascularization in the rhesus monkey by diminishing the blood supply to the inner retina and producing defects in Bruch's membrane by photocoagulation. The neovascular fronds which developed either infiltrated the subretinal space or proliferated through necrotic and gliotic retina into the vitreous cavity. Sequential electron microscopic sections of neovascular fronds in the subretinal space demonstrated that the advancing capillary sprouts were composed of primitive endothelial tubes surrounded by pericytes and enmeshed in a loose basement-membrane-like substance. More mature capillaris and displayed endothelial fenestrations and endothelial-pericyte membranous contacts. Large neovascular fronds developed major feeding vessels that closely resembled normal small choroidal arteries and veins. Retinal pigment epithelial cells in various guises were in constant association with proliferating neovascular networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The image analysis techniques developed in Part 1 to study microstructural changes in non-woven fabrics are applied to measure the fibre orientation distribution and fibre length distribution of hydroentangled fabrics. The results are supported by strength and modulus measurements using samples from the same fabrics. It is shown that the techniques developed can successfully be used to assess the degree of entanglement of hydroentangled fabrics regardless of their thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In this study, the efficiency of Guar gum as a biopolymer has been compared with two other widely used inorganic coagulants, ferric chloride (FeCl3) and aluminum chloride (AlCl3), for the treatment of effluent collected from the rubber-washing tanks of a rubber concentrate factory. Settling velocity distribution curves were plotted to demonstrate the flocculating effect of FeCl3, AlCl3 and Guar gum. FeCl3 and AlCl3 displayed better turbidity removal than Guar gum at all settling velocities.

Result: FeCl3, AlCl3 and Guar gum removed 92.8%, 88.2% and 88.1% turbidity, respectively, of raw wastewater at a settling velocity of 0.1 cm min-1, respectively. Scanning electron microscopic (SEM) study conducted on the flocs revealed that Guar gum and FeCl3produced strong intercoiled honeycomb patterned floc structure capable of entrapping suspended particulate matter. Statistical experimental design Response Surface Methodology (RSM) was used to design all experiments, where the type and dosage of flocculant, pH and mixing speed were taken as control factors and, an optimum operational setting was proposed.

Conclusion: Due to biodegradability issues, the use of Guar gum as a flocculating agent for wastewater treatment in industry is highly recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study is to examine microscopically the destruction of bacterial biofilms mediated by atmospheric pressure non-thermal plasma (APNTP) at cellular level as well as at the level of biofilm structure as a whole. Methods: 3-day old bacterial biofilms were grown on polycarbonate coupons in a dual channel flow cell and were treated with an in-housed designed atmospheric pressure non-thermal plasma jet for up to 4 minutes of exposure before being examined by both confocal laser scanning microscopy (CLSM), preceded by Live/Dead bacterial viability staining, and scanning electron microscopy (SEM). Results: Differential live/dead staining followed by confocal microscopy examination revealed that biofilm eradication by APNTP was mediated by varying levels of both cell killing and physical removal. Relative extent of each mechanism was dependent on plasma operating conditions, bacterial species, growth conditions and biofilm thickness. On the other hand, SEM examination of plasma-exposed biofilms revealed a series of morphological changes exhibited by biofilm cells ranging from increased roughness of cell surface to complete cell lysis. Conclusions: Interesting mechanistic insights have been revealed by microscopic examination of plasma-treated bacterial biofilms that, when coupled with more specific biochemical studies, will not only contribute significantly to our understanding of the mechanism of plasma mediated biofilm destruction but also will help in better application-guided development of this novel anti-biofilm approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils and saprolites developed from interbedded shales and limestones of the Conasauga Group are widespread in the Valley and Ridge Province of East Tennessee. Thin sections from four soil profiles were examined by petrographic and scanning electron microscopy including backscatter electron and energy-dispersive X-ray analyses. Iron and manganese released by weathering had migrated differentially downward and precipitated as crystalline and noncrystalline oxides. Oxides were observed as nodules, granular particulates, pore fillings, and coatings on other minerals, packing voids, vesicles, channels, and chambers. Iron oxides formed predominantly as coatings on packing-void walls and on laminated clays in vesicles and channels. Manganese oxides occurred as an early replacement phase of packing voids and of fracture-filling carbonate minerals. Iron oxides were dominant in moderately well-drained and oxidized horizons of the soil solum, whereas manganese oxides were abundant in the oxidized and moderately leached saprolite zone where the water table fluctuates seasonally. Therefore, a manganese enrichment zone, on a bulk soil basis, occurred generally below the iron oxide zone in the soil profile. Such differential migration and accumulation of iron and manganese have been controlled by localized soil microenvironments. Micromorphologic features observed in this study are important in land-use evaluation for hazardous waste disposal. © 1990.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gold is the optimal tip metal for light emission in scanning tunnelling microscopy (LESTM) under ambient conditions. Sharp Au-tips of similar to 10nm radius were produced reliably using a safe, two-step etching method in 20% (w/w) CaCl2 solution. Previous CaCl2-based methods have tended to produce blunter tips, while other etching techniques that do produce sharp Au-tips, do so with the use of toxic or hazardous electrolytes. The tips are characterised using scanning electron microscopy and their efficacy in LESTM is evidenced by high-resolution, simultaneous topographic and photon mapping of Au(1 1 1)- and polycrystalline Au-surfaces. Spectra of the optical emission exhibit only one or two peaks with etched tips in contrast to the more complex spectra typical of cut tips; this feature, together with the highly symmetric geometry of the tips, facilitates a definitive analysis of the light emission process. (c) 2007 Elsevier B. V.. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/s on an ultra-precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM FIB- FEI Quanta 3D FEG) was used to examine the cutting tool before and after the machining. A surface finish of Ra=9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon, germanium, etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC. It has also been demonstrated that the structural phase transformations associated with the diamond turning of brittle materials which are normally considered as a prerequisite to ductile-regime machining, may not be observed during ductile-regime machining of polycrystalline materials.