33 resultados para STREPTOCOCCUS MUTANS
Resumo:
Introduction: Streptococcus bovis can lead to bacteraemia, septicaemia, and ultimately endocarditis. The objective of this study was to evaluate the long-term implications of S. bovis endocarditis on cardiac morbidity and mortality.
Methods: A retrospective cohort study was performed between January 2000 and March 2009 to assess all patients diagnosed with S. bovis bacteraemia from the Belfast Health and Social Care Trust. The primary end-point for cardiac investigations was the presence of endocarditis. Secondary end-points included referral for cardiac surgery and overall mortality.
Results: Sixty-one positive S. bovis blood cultures from 43 patients were included. Following echocardiography, seven patients were diagnosed with infective endocarditis (16.3 % of total patients); four patients (9.3 %) had native valve involvement while three (7.0 %) had prosthetic valve infection. Five of these seven patients had more than one positive S. bovis culture (71.4 %). Three had significant valve dysfunction that warranted surgical repair/replacement, one of whom was unfit for surgery. There was a 100 % recurrence rate amongst the valve replacement patients (n = 2) and six patients with endocarditis had colorectal pathology. Patients with endocarditis had similar long-term survival as those with non-endocarditic bacteraemia (57.1 % alive vs. 50 % of non-endocarditis patients, p = 0.73).
Conclusion: Streptococcus bovis endocarditis patients tended to have pre-existing valvular heart disease and those with prosthetic heart valves had higher surgical intervention and relapse rates. These patients experienced a higher rate of co-existing colorectal pathology but currently have reasonable long-term outcomes. This may suggest that they represent a patient population that merits consideration for an early surgical strategy to maximise long-term results, however, further evaluation is warranted. © 2013 The Japanese Association for Thoracic Surgery.
Resumo:
Sub-optimal recovery of bacterial DNA from whole blood samples can limit the sensitivity of molecular assays to detect pathogenic bacteria. We compared 3 different pre-lysis protocols (none, mechanical pre-lysis and achromopeptidasepre-lysis) and 5 commercially available DNA extraction platforms for direct detection of Group B Streptococcus (GBS) in spiked whole blood samples, without enrichment culture. DNA was extracted using the QIAamp Blood Mini kit (Qiagen), UCP Pathogen Mini kit (Qiagen), QuickGene DNA Whole Blood kit S (Fuji), Speed Xtract Nucleic Acid Kit 200 (Qiagen) and MagNA Pure Compact Nucleic Acid Isolation Kit I (Roche Diagnostics Corp). Mechanical pre-lysis increased yields of bacterial genomic DNA by 51.3 fold (95% confidence interval; 31.6–85.1, p < 0.001) and pre-lysis with achromopeptidase by 6.1 fold (95% CI; 4.2–8.9, p < 0.001), compared with no pre-lysis. Differences in yield dueto pre-lysis were 2–3 fold larger than differences in yield between extraction methods. Including a pre-lysis step can improve the limits of detection of GBS using PCR or other molecular methods without need for culture.
Resumo:
Analysis of the draft genome sequence of the opportunistic pathogen Propionibacterium acnes type strain NCTC 737 (=ATCC 6919) revealed five genes with sequence identity to the co-haemolytic Christie-Atkins-Munch-Peterson (CAMP) factor of Streptococcus agalactiae. The predicted molecular masses for the expressed proteins ranged from 28 to 30 kDa. The genes were present in each of the three recently identified recA-based phylogenetic groupings of P. acnes (IA, IB and 11), as assessed by PCR amplification. Conserved differences in CAMP factor gene sequences between these three groups were also consistent with their previous phylogenetic designations. All type IA, IB and 11 isolates were positive for the co-haemolytic; reaction on sheep blood agar. Immunoblotting and silver staining of SIDS-PAGE gels, however, revealed differential protein expression of CAMP factors amongst the different groups. Type IB and 11 isolates produced an abundance of CAMP factor 1, detectable by specific antibody labelling and silver staining of SDS-PAGE gels. In contrast, abundant CAMP factor production was lacking in type A isolates, although larger amounts of CAMP factor 2 were detectable by immunoblotting compared with type 11 isolates. While the potential role of the abundant CAMP factor 1 in host colonization or virulence remains to be determined, it should be noted that the type strain of P. acnes used in much of the published literature is a type A isolate and is, therefore, lacking in this attribute.
Resumo:
A novel microarray was constructed with DNA PCR product probes targeting species specific functional genes of nine clinically significant respiratory pathogens, including the Gram-positive organisms (Streptococcus pneumoniae, Streptococcus pyogenes), the Gram-negative organisms (Chlamydia pneumoniae, Coxiella burnetii Haemophilus spp., Legionella pneumophila, Moraxella catarrhalis, and Pseudomonas aeruginosa), as well as the atypical bacterium, Mycoplasma pneumoniae. In a "proof-of-concept" evaluation of the developed microarray, the microarray was compared with real-time PCR from 14 sputum specimens from COPD patients. All of the samples positive for bacterial species in real-time PCR were also positive for the same bacterial species using the microarray. This study shows that a microarray using PCR probes is a potentially useful method to monitor the populations of bacteria in respiratory specimens and can be tailored to specific clinical needs such as respiratory infections of particular patient populations, including patients with cystic fibrosis and bronchiectasis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Removal of the spleen presents a lifelong risk of infection, in particular the syndrome of overwhelming postsplenectomy sepsis. Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitides are the most common organisms involved, but malaria, babesiosis and DF-2 also create a problem. Immunisation with pneumococcal vaccine, H. influenzae type b vaccine, influenza vaccine and, if in a high risk area, meningococcal vaccine is recommended. Lifelong phenoxymethylpenicillin 250mg twice daily is also advised, especially in high risk groups such as children and immunocompromised patients. If patients are unwilling to take medicine lifelong, or are unlikely to comply, an antibiotic supply should be made available at all times and administration should commence at the first sign of illness.
Resumo:
The in vitro activity of moxifloxacin and comparator agents against respiratory isolates from a range of geographically distinct centres around the United Kingdom was investigated in the following study. Clinical isolates of Streptococcus pneumoniae (n = 257), Haemophilus influenzae (n = 399) and Moraxella catarrhalis (n = 253) were obtained between March 1998 and April 1999 from nine centres in the United Kingdom. Sensitivity was determined by testing each isolate for its minimum inhibitory concentration (MIC) by agar dilution. Against Streptococcus pneumoniae moxifloxacin and grepafloxacin were the most active (MIC90 = 0.25 mg/l). Trovafloxacin and sparfloxacin were the next most active (MIC90 = 0.5 mg/l) followed by levofloxacin and ciprofloxacin. MIC90 values of the six fluoroquinolones versus H. influenzae ranged from ciprofloxacin > levofloxacin. Against M. catarrhalis the lowest MIC90 was that of grepafloxacin at 0.0625 mg/l followed by moxifloxacin, sparfloxacin, levofloxacin and ciprofloxacin. Trovafloxacin demonstrated the highest MIC90 at 0.5 mg/l. These results demonstrate that moxifloxacin has superior in vitro activity against respiratory tract pathogens than any other comparator quinolones available for clinical use.
Resumo:
Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.
Resumo:
Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from Klebsiella pneumoniae K2, Streptococcus pneumoniae serotype 3 and Pseudomonas aeruginosa increased the resistance to polymyxin B of an unencapsulated K. pneumoniae mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil alpha-defensin 1 (HNP-1) for unencapsulated K. pneumoniae, Escherichia coli and P. aeruginosa PAO1. Polymyxin B or HNP-1 released CPS from capsulated K. pneumoniae, S. pneumoniae serotype 3 and P. aeruginosa overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger in vivo the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.
Resumo:
Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.
Resumo:
Introduction and aims: The role bacteria play in the development and progression of Chronic Obstructive Pulmonary Disease (COPD) is unclear. We used culture-independent methods to describe differences and/or similarities in microbial communities in the lower airways of patients with COPD, healthy non-smokers and smokers.
Methods: Bronchial wash samples were collected from patients with COPD (GOLD 1–3; n = 18), healthy non-smokers (HV; n = 11) and healthy smokers (HS; n = 8). Samples were processed using the Illumina MiSeq platform. The Shannon-Wiener Index (SW) of diversity, lung obstruction (FEV1/FVC ratio) and ordination by Non-Metric Multidimensional Scaling (NMDS) on Bray-Curtis dissimilarity indices were analysed to evaluate how samples were related. Principal component analysis (PCA) was performed to assess the effect specific taxa had within each cohort. Characteristics of each cohort are shown in Table 1.
Results: There was no difference in taxa richness between cohorts (range: 69–71; p = 0.954). Diversity (SW Index) was significantly lower in COPD samples compared to samples from HV and HS (p = 0.009 and p = 0.033, respectively). There was no significant difference between HV and HS (p = 0.186). The FEV1/FVC ratio was significantly lower for COPD compared to HV (p = 9*10–8) and HS (p = 2*10–6), respectively. NMDS analysis showed that communities belonging to either of the healthy groups were more similar to each other than they were to samples belonging to the COPD group. PCA analysis showed that members of Streptococcus sp. and Haemophilus sp. had the largest effect on the variance explained in COPD. In HS, Haemophilus sp., Fusobaterium sp., Actinomyces sp., Prevotella sp. and Veillonella sp. had the largest effect on the variance explained, while in HV Neisseria sp., Porphyromonas sp., Actinomyces sp., Atopobium sp., Prevotella and Veillonella sp. had the largest effect on the variance explained.
Conclusions: The study demonstrates that microbial communities in the lower airways of patients with COPD are significantly different from that seen in healthy comparison groups. Patients with COPD had lower microbial diversity than either of the healthy comparison groups, higher relative abundance of members of Streptococcus sp. and lower relative abundance of a number of key anaerobes.Characteristics
Resumo:
Introduction and Aims: The identification of complex chronic polymicrobial infections, such as those observed in the cystic fibrosis (CF) airways, are often a diagnostic challenge. Few studies have compared culture-dependent methods with molecular identification making it hard to describe bacterial communities in a comprehensive manner. The aim of the study is to compare four different methods with respect to their similarities and differences in detection of bacteria. Methods: We compared41 sputum samples fromroutine clinical-culture, extended-culture (aerobic and anaerobic), and molecular identification such as Roche 454-FLX Titanium and T-RFLP to assess concurrence between methodologies in detecting bacteria. The agreement between methodologies in detecting either absence or presence of bacterial taxa was assessed by Kappa (κ) statistics. Results: The majority of bacterial taxa identified by culture were also identified with molecular analysis. In total 2, 60, 25, and 179 different bacterial taxa were identified with clinical-culture, extended-culture, T-RFLP and 454-FLX respectively. Clinical-culture, extended-culture and T-RFLP were poor predictors of species richness when compared to 454-FLX (p < 0.0001). Agreement between methods for detecting Pseudomonas sp. and Burkholderia sp. was good with κ ≥ 0.7 [p < 0.0001] and κ ≥ 0.9 [p < 0.0001] respectively. Detection of anaerobic bacteria, such as Prevotella sp. and Veillonella sp., was moderate between extended-culture and 454-FLX with κ = 0.461 [p < 0.0001] and κ = 0.311 [p = 0.032] respectively, and good between T-RFLP and 454-FLX with κ = 0.577 [p < 0.0001] and κ = 0.808 [p < 0.0001] respectively. Agreement between methods for other main bacterial taxa, such as Staphylcoccus sp. and Streptococcus sp., was poor with only a moderate agreement for detection of Streptococcus sp. observed between T-RFLP and 454-FLX (κ = 0.221 [p = 0.024]). Conclusions: This study demonstrates the increased sensitivity culture-independent microbial identification such as the 454-FLX have over clinical-culture, extended-culture and T-RFLP methodologies. The extended-culture detected majority of the most prevalent bacterial taxa associated with chronic colonisation of the CF airways which were also detected by culture-independent methodologies. However, agreement between methods in detecting number of potentially relevant bacteria is largely lacking.
Resumo:
Introduction and Aims: Persistent bacterial infection is a major cause of morbidity and mortality in patients with both Cystic Fibrosis (CF) and non-CF Bronchiectasis (non-CFBX). Numerous studies have shown that CF and non-CFBX airways are colonised by a complex microbiota. However, many bacteria are difficult, if not impossible, to culture by conventional laboratory techniques. Therefore, molecular detection techniques offer a more comprehensive view of bacterial diversity within clinical specimens. The objective of this study was to characterise and compare bacterial diversity and relative abundance in patients with CF and non-CFBX during exacerbation and when clinically stable.
Methods: Sputum samples were collected from CF (n=50 samples) and non-CFBX (n=52 samples) patients at the start and end of treatment for an infective exacerbation and when clinically stable. Pyrosequencing was used to assess the microbial diversity and relative genera (or the closest possibly taxonomic order) abundance within the samples. Each sequence read was defined based on 3% difference.
Results: High-throughput pyrosequencing allowed a sensitive and detailed examination of microbial community composition. Rich microbial communities were apparent within both CF (171 species-level phylotypes per genus) and non-CFBX airways (144 species-level phylotypes per genus). Relative species distribution within those two environments was considerably different; however, relatively few genera formed a core of microorganisms, representing approximately 90% of all sequences, which dominated both environments. Relative abundance based on observed operational taxonomic units demonstrated that the most abundant bacteria in CF were Pseudomonas (28%), Burkholderia (22%), Streptococcus (13%), family Pseudomonadaceae (8%) and Prevotella (6%). In contrast, the most commonly detected operational taxonomic units in non-CFBX were Haemophilus (22%), Streptococcus (14%), other (unassigned taxa) (11%), Pseudomonas (10%), Veillonella (7%) and Prevotella (6%).
Conclusions: These results suggest that distinctive microbial communities are associated with infection and/or colonisation in patients with both CF and non-CFBX. Although relatively high species richness was observed within the two environments, each was dominated by different core taxa. This suggests that differences in the lung environment of these two diseases may affect adaptability of the relevant bacterial taxa.
Resumo:
Introduction and Aims: Previous studies have shown that the lungs of Cystic Fibrosis (CF) and bronchiectasis (BE, not caused by CF) patients are colonised by a range of aerobic and anaerobic bacteria. As bacteria are also implicated in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD), this study aimed to determine the culture microbiome of the COPD airways.
Methods: Samples were collected from 13 stable COPD patients during routine bronchoscopy. Bronchial washings were taken at a single location in the right middle lobe by flushing and removing 30 ml of sterile saline. Samples were cultured under strict anaerobic conditions with bacteria detected by plating on both selective and non-selective agar media and quantified by total viable count (TVC). Identification of the cultured bacteria was performed by amplification and subsequent sequencing of the 16sRNA gene.
Results: Mean FEV1 was 1.36 (range 0.84–2.26, mean per cent predicted FEV1, 54%), and the mean ratio (FEV1/FVC) was 51%. Bacteria were detected in 12/13 samples (92%) with bacteria from the genera Streptococcus [12/13 samples, 92%; mean (range) TVC 9.62×105 cfu/ml (1.50×103–1.42×107)] and Haemophilus [4/13 samples, 31%; mean (range) 6.40×104 cfu/ml (2.20×103–1.60×105)] most frequently detected. Anaerobic bacteria primarily from the genera Prevotella [8/13 samples, 62%; mean (range) TVC 1.12×104 cfu/ml (1.30×103–4.20×104)] and Veillonella [5/13 samples, 38%; mean (range) TVC 1.29×105 cfu/ml (4.20×103–3.60×105)] were also detected. Pseudomonas and Moraxella were not detected in any samples.
Conclusions: Our results show that bacteria from the genera Streptococcus, Haemophilus, Prevotella and Veillonella are frequently present the airways of patients suffering from COPD. Taking account of the dilutional effect of the bronchial wash procedure and extrapolating to allow comparison with sputum data in our laboratory for CF and BE, the relative load of bacteria from the genera Streptococcus, Prevotella and Veillonella is similar in these three airway diseases. The potential role of these bacteria in the progression and pathogenesis of COPD requires further investigation.
Resumo:
Cystic fibrosis is characterised by chronic polymicrobial infection and inflammation in the airways of patients. Antibiotic treatment regimens, targeting recognised pathogens, have substantially contributed to increased life expectancy of patients with this disease. Although the emergence of antimicrobial resistance and selection of highly antibiotic-resistant bacterial strains is of major concern, the clinical relevance in cystic fibrosis is yet to be defined. Resistance has been identified in recognised cystic fibrosis pathogens and in other bacteria (eg, Prevotella and Streptococcus spp) detected in the airway microbiota, but their role in the pathophysiology of infection and inflammation in chronic lung disease is unclear. Increased antibiotic resistance in cystic fibrosis might be attributed to a range of complex factors including horizontal gene transfer, hypoxia, and biofilm formation. Strategies to manage antimicrobial resistance consist of new antibiotics or localised delivery of antimicrobial agents, iron sequestration, inhibition of quorum-sensing, and resistome analysis. Determination of the contributions of every bacterial species to lung health or disease in cystic fibrosis might also have an important role in the management of antibiotic resistance.