22 resultados para STITCHED FIBERGLASS MAT
Resumo:
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.
Resumo:
Depth-sensitive magnetic, structural and chemical characterization is important in the understanding and optimization of novel physical phenomena emerging at interfaces of transition metal oxide heterostructures. In a simultaneous approach we have used polarized neutron and resonant X-ray reflectometry to determine the magnetic profile across atomically sharp interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers with sub-nanometer resolution. In particular, the X-ray resonant magnetic reflectivity measurements at the Fe and Mn resonance edges allowed us to determine the element specific depth profile of the ferromagnetic moments in both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in contrast to previous observations on inversely deposited layers. Additional resonant X-ray reflection measurements indicate a region of an altered Mn- and O-content at the interface, with a thickness matching that of the magnetic diluted layer, as origin of the reduction of the magnetic moment.
Resumo:
We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.
Resumo:
The precise knowledge of the temperature of an ultracold lattice gas simulating a strongly correlated
system is a question of both fundamental and technological importance. Here, we address such
question by combining tools from quantum metrology together with the study of the quantum
correlations embedded in the system at finite temperatures. Within this frame we examine the spin-
1 2 XY chain, first estimating, by means of the quantum Fisher information, the lowest attainable
bound on the temperature precision. We then address the estimation of the temperature of the sample
from the analysis of correlations using a quantum non demolishing Faraday spectroscopy method.
Remarkably, our results show that the collective quantum correlations can become optimal
observables to accurately estimate the temperature of our model in a given range of temperatures.
Resumo:
Quantum and global discord in a spin-1 Heisenberg chain subject to single-ion anisotropy (uniaxial field) are studied using exact diagonalisation and the density matrix renormalisation group (DMRG). We find that these measures of quantum non-classicality are able to detect the quantum phase transitions confining the symmetry protected Haldane phase and show critical scaling with universal exponents. Moreover, in the case of thermal states, we find that quantum discord can increase with increasing temperature.
Resumo:
We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to $N$ dissipative baths by using a new approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyse the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.