29 resultados para STACKS
Resumo:
The search for materials or systems exhibiting a high magnetic saturation has been of longstanding importance. It has been suggested that increased saturation could be achieved by coupling a transition metal via a spacer to a rare earth. We report Gd/Cr/Fe70Co30 multilayer stacks and find reduced yet modulating magnetic moment as a function of Cr thickness. Through a micro structural analysis the lowered moment is indicated by the nucleation of the ultrathin Gd films into an fcc phase. We discuss the possible solution in terms of quasi-perfect lattice match seed material to promote growth of hcp Gd.
Resumo:
Density-functional theory (DFT) is used to examine the basal and prism surfaces of ice Ih. Similar surface energies are obtained for the two surfaces; however, in each case a strong dependence of the surface energy on surface proton order is identified. This dependence, which can be as much as 50% of the absolute surface energy, is significantly larger than the bulk dependence (< 1%) on proton order, suggesting that the thermodynamic ground state of the ice surface will remain proton ordered well above the bulk order-disorder temperature of about 72 K. On the basal surface this suggestion is supported by Monte Carlo simulations with an empirical potential and solution of a 2D Ising model with nearest neighbor interactions taken from DFT. Order parameters that define the surface energy of each surface in terms of nearest neighbor interactions between dangling OH bonds (those which point out of the surface into vacuum) have been identified and are discussed. Overall, these results suggest that proton order-disorder effects have a profound impact on the stability of ice surfaces and will most likely have an effect on ice surface reactivity as well as ice crystal growth and morphology. S Supplementary data are available from stacks.iop.org/JPhysCM/22/074209/mmedia
Resumo:
The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined. The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures. © 2012 O. V. Shramkova and A. G. Schuchinsky.
Resumo:
The oxygen reduction reaction (ORR) activity of Pt/C catalysts was investigated in electrolytes of 0.5 mol/L H2SO4 containing varying concentrations of methanol in a half-cell. It was found that the ORR activity was improved notably in an electrolyte of 0.5 mol/L H2SO4 containing 0.1 mol/L CH3OH as compared with that in 0.5 mol/L H2SO4, 0.5 mol/L H2SO4 containing 0.5 mol/L CH3OH, or 0.5 mol/L H2SO4 containing 1.0 mol/L CH3OH electrolytes. The same tendency for improved ORR activity was also apparent after commercial Nafion (R) NRE-212 membrane was hot-pressed onto the catalyst layers. The linear sweep voltammetry results indicate that the ORR activities of the Pt/C catalyst were almost identical in the 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH solution before and after coated with the Nafion (R) membrane. Electrochemical impedance spectroscopy results demonstrated that the resistance of the Nafion (R) membrane is smaller in the electrolyte of 0.5 mol/L H2SO4 + 0.1 mol/L CH3OH than in other electrolytes with oxygen gas feed. This exceptional property of the Nafion (R) membrane is worth investigating and can be applied in fuel cell stacks to improve the system performance. (c) 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Resumo:
The use of hybrid materials including carbon fiber reinforced plastics (CFRPs) and lightweight metals such as titanium are increasing particularly in aerospace applications. Multi-material stacks require a number of holes for the assembly purposes. In this research, drilling trials have been carried out in CFRP, Ti-6Al-4V and CFRP/Ti-6Al-4V stack workpieces using AlTiN coated tungsten carbide drill bit. The effects of process parameters have been investigated. The thrust force, torque, burr formation, delamination, surface roughness and tool wear have been analyzed at various processing condition. The experimental results have shown that the thrust force, torque, burr formation and the average surface roughness increase with the increased feed rate and decrease with the increased cutting speed in drilling of Ti-6Al-4V. In drilling CFRP, delamination and the average surface roughness has similar tendency with the cutting parameters however thrust force and torque rises with the increased cutting speed. The results showed that after making 15 holes in CFRP/Ti-6Al-4V stack, measured thrust forces were increased by 20% in CFRP and by 45% in Ti-6Al-4V. Delamination was found to be much smaller in drilling of CFRP in stack from compared to drilling single CFRP. Tool life was significantly shortened in drilling of stack due to the combination of the wear mechanisms.
Resumo:
The nonlinear scattering of pulses by periodic stacks of semiconductor layers with magnetic bias has been studied in the self-consistent problem formulation, taking into account mobility of carriers. The three-wave mixing technique has been applied to the analysis of the waveform evolution in the stacks illuminated by two Gaussian pulses with different central frequencies and lengths. The effects of external magnetic bias, and stack physical and geometrical parameters on the properties of the scattered waveforms are discussed. © 2013 IEEE.
Resumo:
The properties of the combinatorial frequency generation and wave scattering by periodic stacks of nonlinear passive semiconductor layers are explored. It is demonstrated that the nonlinearity in passive weakly nonlinear semiconductor medium has the resistive nature associated with the dynamics of carriers. The features of the combinatorial frequency generation and the effects of the pump wave scattering and parameters of the constituent semiconductor layers on the efficiency of the frequency mixing are discussed and illustrated by the examples. © 2013 IEICE.
Resumo:
Several theories of legislative organisation have been proposed to explain committee selection in American legislatures, but do these theories travel outside the United States? This paper tests whether these theories apply to data from the Canadian House of Commons. It was found that the distributive and partisan models of legislative organisation explain committee composition in Canada. In many cases, committees in the House of Commons are made up of preference outliers. As predicted by partisan models, it was also found that the governing party stacks committees with its members, but this is conditional upon the strength of the governing party.
Resumo:
Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The combinatorial frequency generation by the periodic stacks of magnetically biased semiconductor layers has been modelled in a self-consistent problem formulation, taking into account the nonlinear dynamics of carriers. It is shown that magnetic bias not only renders nonreciprocity of the three-wave mixing process but also significantly enhances the nonlinear interactions in the stacks, especially at the frequencies close to the intrinsic magneto-plasma resonances of the constituent layers. The main mechanisms and properties of the combinatorial frequency generation and emission from the stacks are illustrated by the simulation results, and the effects of the individual layer parameters and the structure arrangement on the stack nonlinear and nonreciprocal response are discussed. © 2014 Elsevier B.V. All rights reserved.
Resumo:
The properties of combinatorial frequency generation by two-tone Gaussian pulses incident at oblique angles on quasiperiodic (Fibonacci and Thue-Morse) stacks of binary semiconductor layers are discussed. The analysis has been performed using the self-consistent model taking into account the nonlinear dynamics of mobile charges in the layers. The effects of the stack arrangements and constituent layer parameters on the combinatorial frequency waveforms are presented for the specific structures of both types
Resumo:
The combinatorial frequency generation by the periodic stacks of magnetically biased semiconductor layers has been modelled in the self-consistent problem formulation, taking into account the nonlinear dynamics of carriers. It has been shown that the nonlinear response of the magnetoactive semiconductor periodic structure is strongly enhanced by magnetic bias and combinations of the layer physical and geometrical parameters. The effects of the pump wave nonreciprocal reflectance and field displacement on the efficiency of three-wave mixing process is illustrated by the simulation results
Resumo:
This paper discusses modelling multilayer dielectric stacks for use as substrate support for frequency selective surface. A method of a fast simulation of multilayer dielectric stack as a complementary tool for FSS design is proposed. Using the method analysis of effect of different parts of the multilayer stack has been performed. The tool has also been used for extraction of material parameters from the measured results. Measured transmission and reflection of a sample manufactured material stack show good agreement with the simulated results obtained for extracted material parameters.
Resumo:
This paper reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly (vinyl alcohol)through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm2 s-1, 50 times greater than blank poly (vinyl alcohol) and twice that ofnanocomposites containing non-plasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.