24 resultados para SOLID-STATE LASER
Resumo:
High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.
The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.
A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.
The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.
Resumo:
An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.
Resumo:
Raman and spreading resistance profiling have been used to analyze defects in germanium caused by hydrogen and helium implants, of typical fluences used in layer transfer applications. Beveling has been used to facilitate probing beyond the laser penetration depth. Results of Raman mapping along the projection area reveal that after post-implant annealing at 400°C, some crystal damage remains, while at 600°C, the crystal damage has been repaired. Helium implants create acceptor states beyond the projected range, and for both hydrogen and helium, 1×1016 acceptors/cm2 remain after 600°C. These are thought to be vacancy-related point defect clusters.
Resumo:
Solid molecular dispersions of bicalutamide (BL) and polyvinylpyrrolidone (PVP) were prepared by hot melt extrusion technology at drug-to-polymer ratios of 1:10, 2:10, and 3:10 (w/w). The solid-state properties of BL, physical mixtures of BL/PVP, and hot melt extrudates were characterized using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), Raman, and Fourier transform infrared (FTIR) spectroscopy. Drug dissolution studies were subsequently conducted on hot melt extruded solid dispersions and physical mixtures. All hot melt extrudates had a single Tg between theTg of amorphous BL and PVP indicating miscibility of BL with PVP and the formation of solid molecular dispersions. PXRD con?rmed the presence of the amorphous form of BL within the extrudates. Conversely, PXRD patterns recorded for physical mixtures showed sharp bands characteristic of crystalline BL, whereas DSC traces had a distinct endotherm at 1968C corresponding to melting of crystalline BL. Further investigations using DSC con?rmed solid-state plasticization of PVP by amorphous BL and hence antiplasticization of amorphous BL by PVP. Experimentally observed Tg values of physical mixtures were shown to be signi?cantly higher than those calculated using the Gordon–Taylor equation suggesting the formation of strong intermolecular interactions between BL and PVP. FTIR and Raman spectroscopy were used to investigate these interactions and strongly suggested the presence of secondary interaction between PVP and BL within the hot melt extrudates. The drug dissolution properties of hot melt extrudates were enhanced signi?cantly in comparison to crystalline BL and physical mixtures. Moreover, the rate and extent of BL release were highly dependent on the amount of PVP present within the extrudate. Storage of the extrudates con?rmed the stability of amorphous BL for up to 12 months at 208C, 40% RH whereas stability was reduced under highly humid conditions (208C, 65% RH). Interestingly, BL recrystallization after storage under these conditions had no effect on the dissolution properties of the extrudates.
Resumo:
Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. However, this entanglement may appear a mere mathematical artefact of the typical symmetrization procedure of many-body wavefunction in solid state physics. Here we show that this entanglement is physical, demonstrating the principles of its extraction from a typical solid-state system by scattering two particles off the system. Moreover, we show how to simulate this process using present day optical lattice technology. This demonstrates not only that entanglement exists in solids but also that it can be used for quantum information processing or as a test of Bell's inequalities.
Resumo:
Variable-temperature magnetic susceptibility measurements in the solid state of the bis complex of tris(1-pyrazolyl)-methane with Fe(II), [Fe(tpm)2](ClO4)2, suggest the existence of singlet-quintet spin crossover with the singlet isomer largely favored at room temperature. In acetonitrile solution, measurement of the absorption spectrum as a function of temperature reveals a spin equilibrium with the quintet population varying from ca. 6% at 233 K to ca. 30% at 295 K. When the complex in solution is irradiated with a laser pulse at wavelengths within the ligand field absorption band of the singlet isomer, ground-state depletion occurs within the pulse duration followed by fast recovery to the original absorbance level with a time constant of 25 +/- 5ns. The recovery time is virtually independent of temperature over the range +23 to -43-degrees-C, but the signal:noise ratio of the transient signals increases with decreasing temperature. The effect was observable at several monitoring wavelengths spanning the LF and MLCT absorption regions of the complex but only when the irradiation wavelength fell within the LF absorption region. Irradiation within the MLCT band produced no effect other than that of laser pulse scatter. The observations are interpreted in terms of photoperturbation of the singlet-quintet spin state equilibrium, which in this case occurs solely through excitation in the ligand field absorption region of the complex and is the first reported instance of this type for a spin-crossover complex in solution.
Resumo:
Objectives: This article uses conventional and newly extended solubility parameter (δ) methods to identify polymeric materials capable of forming amorphous dispersions with itraconazole (itz). Methods: Combinations of itz and Soluplus, Eudragit E PO (EPO), Kollidon 17PF (17PF) or Kollidon VA64 (VA64) were prepared as amorphous solid dispersions using quench cooling and hot melt extrusion. Storage stability was evaluated under a range of conditions using differential scanning calorimetry and powder X-ray diffraction. Key findings: The rank order of itz miscibility with polymers using both conventional and novel δ-based approaches was 17PF > VA64 > Soluplus > EPO, and the application of the Flory–Huggins lattice model to itz–excipient binary systems corroborated the findings. The solid-state characterisation analyses of the formulations manufactured by melt extrusion correlated well with pre-formulation screening. Long-term storage studies showed that the physical stability of 17PF/vitamin E TPGS–itz was poor compared with Soluplus and VA64 formulations, and for EPO/itz systems variation in stability may be observed depending on the preparation method. Conclusion: Results have demonstrated that although δ-based screening may be useful in predicting the initial state of amorphous solid dispersions, assessment of the physical behaviour of the formulations at relevant temperatures may be more appropriate for the successful development of commercially acceptable amorphous drug products.
Resumo:
The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.