42 resultados para SH-SY5Y
Resumo:
Summary
1: Managing populations of predators and their prey to achieve conservation or resource management goals is usually technically challenging and frequently socially controversial. This is true even in the simplest ecosystems but can be made much worse when predator–prey relationships are in?uenced by complex interactions, such as biological invasions, population trends or animal movements.
2: Lough Neagh in Northern Ireland is a European stronghold for pollan Coregonus autumnalis, a coregonine ?sh and for river lampreyLampetra ?uviatilis, which feeds parasitically as an adult. Both species are of high conservation importance. Lampreys are known to consume pollan but detailed knowledge of their interactions is scant. While pollan is well known to be a landlocked species in Ireland, the life cycle of normally anadromous river lamprey in Lough Neagh has been unclear. The Lough is also a highly perturbed ecosystem, supporting several invasive, non-native ?sh species that have the potential to in?uence lamprey–pollan interactions.
3: We applied stable isotope techniques to resolve both the movement patterns of lamprey and trophic interactions in this complex community. Recognizing that stable isotope studies are often hampered by high-levels of variability and uncertainty in the systems of interest, we employed novel Bayesian mixing models, which incorporate variability and uncertainty.
4: Stable isotope analyses identi?ed troutSalmo trutta and non-native breamAbramis brama as the main items in lamprey diet. Pollan only represented a major food source for lamprey between May and July.
5: Stable isotope ratios of carbon in tissues from 71 adult lamprey showed no evidence of marine carbon sources, strongly suggesting that Lough Neagh is host to a highly unusual, nonanadromous freshwater population. This ?nding marks out the Lough’s lamprey population as of particular scienti?c interest and enhances the conservation signi?cance of this feature of the Lough.
6: Synthesis and applications.Our Bayesian isotopic mixing models illustrate an unusual pattern of animal movement, enhancing conservation interest in an already threatened population. We have also revealed a complex relationship between lamprey and their food species that is suggestive of hyperpredation, whereby non-native species may sustain high lamprey populations that may in turn be detrimental to native pollan.Long-term conservation of lamprey and pollan in this system is likely to require management intervention, but in light of this exceptional complexity, no simple management options are currently supported. Conservation plans will require better characterization ofpopulation-level interactions and simulation modelling of interventions. More generally, our study demonstrates the importance of considering a full range of possible trophic interactions, particularly in complex ecosystems, and highlights Bayesian isotopic mixing models as powerful tools in resolving trophic relationships.
Key-words: Bayesian, conservation dilemma, Coregonus autumnalis, hyperpredation, Lampetra ?uviatilis, pollan, potamodromous, River lamprey, stable isotope analysis in R, stable isotope
Resumo:
1. The adaptive radiation of fishes into benthic (littoral) and pelagic (lentic) morphs in post-glaciallakes has become an important model system for speciation. Although these systems are well stud-ied, there is little evidence of the existence of morphs that have diverged to utilize resources in theremaining principal lake habitat, the profundal zone.
2. Here, we tested phenotype-environment correlations of three whitefish (Coregonus lavaretus)morphs that have radiated into littoral, pelagic and profundal niches in northern Scandinavianlakes. We hypothesized that morphs in such trimorphic systems would have a morphology adaptedto one of the principal lake habitats (littoral, pelagic or profundal niches). Most whitefish popula-tions in the study area are formed by a single (monomorphic) whitefish morph, and we furtherhypothesized that these populations should display intermediate morphotypes and niche utiliza-tion. We used a combination of traditional (stomach content, habitat use, gill raker counts) andmore recently developed (stable isotopes, geometric morphometrics) techniques to evaluate pheno-type-environment correlations in two lakes with trimorphic and two lakes with monomorphicwhitefish.
3. Distinct phenotype-environment correlations were evident for each principal niche in whitefishmorphs inhabiting trimorphic lakes. Monomorphic whitefish exploited multiple habitats, hadintermediate morphology, displayed increased variance in gillraker-counts, and relied significantlyon zooplankton, most likely due to relaxed resource competition.
4. We suggest that the ecological processes acting in the trimorphic lakes are similar to each other,and are driving the adaptive evolution of whitefish morphs, possibly leading to the formation ofnew species.
Resumo:
The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein v.,as isolated from [S-35]methionine- and [P-33]orthophosphate-labelled IRSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role or tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580. an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependant tyrosine kinase activity and that this modification influences its cellular distribution.
Resumo:
In this study we report for the first time the comprehensive inhibitor profiling of the Proteus mirabilis metalloprotease virulence factor, ZapA (mirabilysin) using a 160 compound focused library of N-alpha mercaptoamide dipeptides, in order to map the S1´ and S2´ binding site preferences of this important enzyme. This study has revealed a preference for the aromatic residues tyrosine and tryptophan in P1´ and aliphatic residues in P2´. From this library, six compounds were identified which exhibited sub- to low micromolar Ki values. The most potent inactivator, SH-CO2-Y-V-NH2 was capable of preventing ZapA-mediated hydrolysis of heat denatured IgA, indicating these inhibitors may be capable of protecting host proteins against ZapA during colonisation and infection.
Resumo:
Laying hens generally choose to aggregate, but the extent to which the environments in which we house them impact on social group dynamics is not known. In this paper the effect of pen environment on spatial clustering is considered. Twelve groups of four laying hens were studied under three environmental conditions: wire floor (W), shavings (Sh) and perches, peat, nestbox and shavings (PPN). Groups experienced each environment twice, for five weeks each time, in a systematic order that varied from group to group. Video recordings were made one day per week for 30 weeks. To determine level of clustering, we recorded positional data from a randomly selected 20-min excerpt per video (a total of 20 min x 360 videos analysed). On screen, pens were divided into six equal areas. In addition, PPN pens were divided into an additional four (sub) areas, to account for the use of perches (one area per half perch). Every 5 s, we recorded the location of each bird and calculated location use over time, feeding synchrony and cluster scores for each environment. Feeding synchrony and cluster scores were compared against unweighted and weighted (according to observed proportional location use) Poisson distributions to distinguish between resource and social attraction.
Resumo:
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.
Resumo:
Although earthworms have been found to inhabit arsenic-rich soils in the U.K., the mode of arsenic detoxification is currently unknown. Biochemical analyses and subcellular localization studies have indicated that As3+-thiol complexes may be involved; however, it is not known whether arsenic is capable of inducing the expression of metallothionein (MT) in earthworms. The specific aims of this paper were (a) to detect and gain an atomic characterization of ligand complexing by X-ray absorption spectrometry (XAS), and (b) to employ a polyclonal antibody raised against an earthworm MT isoform (w-MT2) to detect and localize the metalloprotein by immunoperoxidase histochemistry in the tissues of earthworms sampled from arsenic-rich soil. Data suggested that the proportion of arsenate to sulfur-bound species varies within specific earthworm tissues. Although some arsenic appeared to be in the form of arsenobetaine, the arsenic within the chlorogogenous tissue was predominantly coordinated with S in the form of -SH groups. This suggests the presence of an As::MT complex. Indeed, MT was detectable with a distinctly localized tissue and cellular distribution. While MT was not detectable in the surface epithelium or in the body wall musculature, immunoperoxidase histochemistry identified the presence of MT in chloragocytes around blood vessels, within the typhlosolar fold, and in the peri-intestinal region. Focal immunostaining was also detectable in a cohort of cells in the intestinal wall. The results of this study support the hypothesis that arsenic induces MT expression and is sequestered by the metalloprotein in certain target cells and tissues.
Resumo:
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
Resumo:
The recent synthesis of a new hydrogen binary hydrate with the sH structure has highlighted the potential storage capabilities of water clathrates [T. A. Strobel, C. A. Koh, and E. D. Sloan, J. Phys. Chem. B 112, 1885 (2008) and A. R. C. Duarte, A. Shariati, L. J. Rovetto, and C. J. Peters, J. Phys. Chem. B 112, 1888 (2008)]. In this work, the absorption of hydrogen and the promoters used in the experimental work are considered using a simplified model for the host-guest interaction, which allows one to understand the stabilizing effects of multiple help molecules. Two further hypothetical clathrates, which are isostructural with known zeolite structures, are also investigated. It is shown that the energy gained by absorbing adamantane into these two frameworks is far greater than that gained upon absorption of adamantane into the sH structure. Hence, a clathrate with the same topology as the DDR (Sigma 1) zeolite may be synthesizable with adamantane and hydrogen as guest molecules as, in the conditions explored here, this phase appears to be more stable than the sH structure. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3142503]
Resumo:
Purpose: To compare the endothelial protection of sodium hyaluronate and hydroxypropylmethylcellulose against endothelial damage induced by irrigation. Methods: An in vitro assay with freshly excised porcine eyes was developed using the Janus green photometry technique. Irrigation and aspiration technique was standardised. Forty pairs of porcine eyes were used. One randomly chosen eye was filled with sodium hyaluronate (SH) and the other with hydroxypropylmethylcellulose (HPMC). Irrigation and aspiration was carried out with balanced salt solution for 5 min. Twenty additional pairs of porcine eyes served as controls. Student's t-test was used for statistical analysis. Results: Both viscoelastic agents protected the endothelium as compared with controls. The endothelial protection, determined with the Janus green photometric technique, was significantly greater with HPMC than with SH. Conclusions: Viscoelastic agents are effective in protecting the endothelium from irrigation damage in porcine eyes in vitro. HPMC provided greater protection than SH in this particular model.
Resumo:
Continuous wave rf plasma polymerization of 2-iodothiophene has been studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), and Fourier transform infrared spectroscopy (FTIR). The variation in plasma polymer stoichiometry and the extent of monomer fragmentation are found to be critically dependent upon the electrical discharge power.
Resumo:
Superhydrophobic (SH) particles based on a copper substrate were prepared by a silver deposition technique of different particle sizes from 10µm to 425µm. Such SH particles were found to be pH-responsive and liquid marbles formed using the SH copper substrate destabilised under certain pH conditions. The exposure to high concentrations of acidic or basic gases caused immediate collapse of the liquid marble. However, low concentrations of acidic and basic gases could diffuse across the shell of liquid marbles without adversely affecting the structure. Liquid marbles formed with large SH particles (425
µm) did not fully form a mono-layer around the liquid droplet. This phenomenon, whereby SH particles slide down the surface of the water droplet until an equilibrium position is reached, was studied using a mathematical approach, which related the angle to the vertical axis of the SH particles at t
he equilibrium F, to the shape of liquid marble and the contact angle, ?.
Resumo:
Tephras are important for the NZ-INTIMATE project because they link all three records comprising the composite inter-regional stratotype developed for the New Zealand climate event stratigraphy (NZ-CES). Here we firstly report new calendar ages for 24 widespread marker tephras erupted since 30,000 calendar (cal.) years ago in New Zealand to help facilitate their use as chronostratigraphic dating tools for the NZ-CES and for other palaeoenvironmental and geological applications. The selected tephras comprise 12 rhyolitic tephras from Taupo, nine rhyolitic tephras from Okataina, one peralkaline rhyolitic tephra from Tuhua, and one andesitic tephra each from Tongariro and Egmont/Taranaki volcanic centres. Age models for the tephras were obtained using three methods: (i) C-based wiggle-match dating of wood from trees killed by volcanic eruptions (these dates published previously); (ii) flexible depositional modelling of a high-resolution C-dated age-depth sequence at Kaipo bog using two Bayesian-based modelling programs, Bacon and OxCal's P_Sequence function, and the IntCal09 data set (with SH offset correction-44±17yr); and (iii) calibration of C ages using OxCal's Tau_Boundary function and the SHCal04 and IntCal09 data sets. Our preferred dates or calibrated ages for the 24 tephras are as follows (youngest to oldest, all mid-point or mean ages of 95% probability ranges): Kaharoa AD 1314±12; Taupo (Unit Y) AD 232±10; Mapara (Unit X) 2059±118cal.yrBP; Whakaipo (Unit V) 2800±60cal.yrBP; Waimihia (Unit S) 3401±108cal.yrBP; Stent (Unit Q) 4322±112cal.yrBP; Unit K 5111±210cal.yrBP; Whakatane 5526±145cal.yrBP; Tuhua 6577±547cal.yrBP; Mamaku 7940±257cal.yrBP; Rotoma 9423±120cal.yrBP; Opepe (Unit E) 9991±160cal.yrBP; Poronui (Unit C) 11,170±115cal.yrBP; Karapiti (Unit B) 11,460±172cal.yrBP; Okupata 11,767±192cal.yrBP; Konini (bed b) 11,880±183cal.yrBP; Waiohau 14,009±155cal.yrBP; Rotorua 15,635±412cal.yrBP; Rerewhakaaitu 17,496±462cal.yrBP; Okareka 21,858±290cal.yrBP; Te Rere 25,171±964cal.yrBP; Kawakawa/Oruanui 25,358±162cal.yrBP; Poihipi 28,446±670cal.yrBP; and Okaia 28,621±1428cal.yrBP.Secondly, we have re-dated the start and end of the Lateglacial cool episode (climate event NZce-3 in theNZ-CES), previously referred to as the Lateglacial climate reversal, as defined at Kaipo bog in eastern North Island, New Zealand, using both Bacon and OxCal P_Sequence modelling with the IntCal09 data set. The ca1200-yr-long cool episode, indicated by a lithostratigraphic change in the Kaipo peat sequence to grey mudwith lowered carbon content, and a high-resolution pollen-derived cooling signal, began 13,739±125cal.yrBP and ended 12,550±140cal.yrBP (mid-point ages of the 95% highest posterior density regions, Bacon modelling). The OxCal modelling, generating almost identical ages, confirmed these ages. The Lateglacial cool episode (ca 13.8-12.6cal.kaBP) thus overlaps a large part of the entire Antarctic Cold Reversal chronozone (ca 14.1-12.4cal.kaBP or ca 14.6-12.8cal.kaBP), and an early part of the Greenland Stadial-1 (Younger Dryas) chronozone (ca 12.9-11.7cal.kaBP). The timing of the Lateglacial cool episode at Kaipo is broadly consistent with the latitudinal patterns in the Antarctic Cold Reversal signal suggested for the New Zealand archipelago from marine and terrestrial records, and with records from southern South America. © 2012 Elsevier Ltd.
Resumo:
Tuberculosis (TB) caused by Mycobacterium bovis is a re-emerging disease of livestock that is of major economic importance worldwide, as well as being a zoonotic risk there is significant heritability for host resistance to bovine TB (bTB) in dairy cattle. To identify resistance loci for bTB, we undertook a genome-wide association study in female Holstein-Friesian cattle with 592 cases and 559 age-matched controls from case herds. Cases and controls were categorised into distinct phenotypes: skin test and lesion positive vs skin test negative on multiple occasions, respectively these animals were genotyped with the Illumina BovineHD 700K BeadChip. Genome-wide rapid association using linear and logistic mixed models and regression (GRAMMAR), regional heritability mapping (RHM) and haplotype-sharing analysis identified two novel resistance loci that attained chromosome-wise significance, protein tyrosine phosphatase receptor T (PTPRT; P=4.8 × 10 -7) and myosin IIIB (MYO3B; P=5.4 × 10 -6). We estimated that 21% of the phenotypic variance in TB resistance could be explained by all of the informative single-nucleotide polymorphisms, of which the region encompassing the PTPRT gene accounted for 6.2% of the variance and a further 3.6% was associated with a putative copy number variant in MYO3B the results from this study add to our understanding of variation in host control of infection and suggest that genetic marker-based selection for resistance to bTB has the potential to make a significant contribution to bTB control.