199 resultados para SEXUAL DYSFUNCTION
Resumo:
OBJECTIVE: Impaired flow-mediated dilation (FMD) occurs in disease states associated with atherosclerosis, including SLE. The primary hemodynamic determinant of FMD is wall shear stress, which is critically dependent on the forearm microcirculation. We explored the relationship between FMD, diastolic shear stress (DSS), and the forearm microcirculation in 32 patients with SLE and 19 controls. METHODS AND RESULTS: DSS was calculated using (mean diastolic velocity x 8 x blood viscosity)/baseline brachial artery diameter. Doppler velocity envelopes from the first 15 seconds of reactive hyperemia were analyzed for resistive index (RI), and interrogated in the frequency domain to assess forearm microvascular hemodynamics. FMD was significantly impaired in SLE patients (median, 2.4%; range, -2.1% to 10.7% versus median 5.8%; range, 1.9% to 14%; P
Resumo:
Recent evidence indicates that the anti-angiogenic peptide endostatin may modulate some of the vasomodulatory effects of vascular endothelial growth factor (VEGF) in the retina, including reduction of blood retinal barrier function although it remains uncertain how endostatin promotes endothelial barrier properties. The current study has sought to examine how physiological levels of endostatin alters VEGF-induced inner BRB function using an in vitro model system and evaluation of occludin and ZO-1 regulatory responses. In addition, the ability of exogenous endostatin to regulate VEGF-mediated retinal vascular permeability in vivo was investigated.
Retinal microvascular endothelial cells (RMEC's) were exposed to various concentrations of endostatin. In parallel studies, RMEC monolayers were treated with vascular endothelial growth factor (VEGF165). Vasopermeability of RMEC monolayers and occludin expression were determined.
Blood retinal barrier integrity was quantified in mouse retina using Evans Blue assay following intravitreal delivery of VEGF165, endostatin or a VEGF/endostatin combination.
Endostatin increased the levels of expression of occludin whilst causing no significant change in FITC-dextran flux across the RMEC monolayer. Endostatin reversed the effects of VEGF165-enhanced permeability between microvascular endothelial cells and induced phosphorylation of occludin. Evans Blue leakage from retinas treated with VEGF was 2.0 fold higher than that of contra-lateral untreated eyes (P<0.05) while leakage of eyes from endostatin treated animals was unchanged. When eyes were injected with a combination of VEGF165 and endostatin there was a significant reduction in retinal vasopermeability when compared to VEGF-injected eyes (P<0.05).
We conclude that endostatin can promote integrity of the retinal endothelial barrier, possibly by preventing VEGF-mediated alteration of tight junction integrity. This suggests that endostatin may be of clinical benefit in ocular disorders where significant retinal vasopermeability changes are present.
Resumo:
Advanced glycation end products (AGEs) have been implicated in the progressive vascular dysfunction which occurs during diabetic retinopathy. In the current study we have examined the role of these adducts in blood-retinal barrier (BRB) breakdown and investigated expression of the vasopermeabilizing agent vascular endothelial growth factor (VEGF) in the retina. When normoglycemic rats were injected with AGE-modified albumin daily for up to 10 days there was widespread leakage of FITC-dextran and serum albumin from the retinal vasculature when compared to control animals treated with nonmodified albumin. Ultrastructural examination of the vasculature revealed areas of attenuation of the retinal vascular endothelium and increased vesicular organelles only in the AGE-exposed rats. Quantitative RT-PCR and in situ hybridization demonstrated a significant increase in retinal VEGF mRNA expression (P <0.05). These results suggest that AGEs can initiate BRB dysfunction in nondiabetic rats and a concomitant increase in retinal VEGF expression. These findings may have implications for the role of AGEs in the pathogenesis of diabetic retinopathy.
Resumo:
Nhlh1 is a basic helix-loop-helix transcription factor whose expression is restricted to the nervous system and which may play a role in neuronal differentiation. To directly study Nhlh1 function, we generated null mice. Homozygous mutant mice were predisposed to premature, adult-onset, unexpected death. Electrocardiograms revealed decreased total heart rate variability, stress-induced arrhythmia, and impaired baroreceptor sensitivity. This predisposition to arrhythmia is a likely cause of the observed death in the mutant mice. Heterozygosity for the closely related transcription factor Nhlh2 increased the severity of the Nhlh1-null phenotype. No signs of primary cardiac structural or conduction abnormalities could be detected upon necropsy of the null mice. The pattern of altered heart rhythm observed in basal and experimental conditions (stress and pharmacologically induced) suggests that a deficient parasympathetic tone may contribute to the arrhythmia in the Nhlh1-null mouse. The expression of Nhlh1 in the developing brain stem and in the vagal nuclei in the wild-type mouse further supports this hypothesis. The Nhlh1 mutant mouse may thus provide a model to investigate the contribution of the autonomic nervous system to arrhythmogenesis.
Explaining the absence of the lay voice in sexual health through sociological theories of healthcare
Resumo:
Size at onset of maturity (SOM) was estimated for both male and female Nephrops from primary sexual characteristics and morphometric traits. SOM estimated from primary sexual characteristics based on histological examination of the gonad ranged from 15.1 mm carapace length (CL) in males to 22.9 mm CL in females. Nephrops morphometric maturity, or change in allometric growth of body parts, was estimated from appendix masculina and cutter claw lengths in males and abdomen width in females from two sites in the Irish Sea. Two regression techniques were used to estimate morphometric maturity. Estimated SOM from morphometric characteristics ranged from 23.2 to 27.6 mm CL in females and from 25.9 to 31.0 mm CL in males. Spatial variation in SOM was observed in Nephrops from different parts of the Irish Sea.
Resumo:
Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large.