36 resultados para SDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increasing number of studies have implicated serine proteinases in the development of apoptosis. In this study, we assessed the ability of a set of highly specific irreversible inhibitors (activity probes), incorporating an a-amino alkane diphenyl phosphonate moiety, to modulate cell death. In an initial assessment of the cellular toxicity of these activity probes, we discovered that one example, N-a-tetramethylrhodamine phenylalanine diphenylphosphonate {TMR-PheP(OPh)2} caused a concentration-dependent decrease in the viability of HeLa and U251 mg cells. This reduced cell viability was associated with a time-dependent increase in caspase-3 activity, PARP cleavage and phosphatidylserine translocation, establishing apoptosis as the mechanism of cell death. SDS-PAGE analysis of cell lysates prepared from the HeLa cells treated with TMR-PheP(OPh)2, revealed the presence of a fluorescent band of molecular weight 58 kDa. Given that we have previously reported on the use of this type of activity probe to reveal active proteolytic species, we believe that we have identified a chymotrypsin-like serine proteinase activity integral to the maintenance of cell viability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loading of the photosensitisers meso-Tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP), methylene blue (MB) and IMP with sodium dodecyl sulphate (SDS) into and release from hydrogels composed of the polyelectrolyte poly(methyl vinyl ether-co-maleic acid) crosslinked in a 2:1 ratio with PEG 10,000 were investigated as a potential rapid photodynamic antimicrobial chemotherapy (PACT) treatment for infected wounds using iontophoresis as a novel delivery method. Photosensitiser uptake was very high; (% TMP uptake; 95.53-96.72%) (% MB uptake; 90.58-93.26%) and was PMVE/MA concentration independent, whilst SDS severely limited TMP uptake (5.93-8.75%). Hydrogel hardness, compressibility and adhesiveness on the dermal surface of neonate porcine skin increased with PMVE/MA concentration and were significantly increased with SDS.

The ionic conductivities of the hydrogels increased with PMVE/MA concentration. Drug release was PMVE/MA concentration independent, except for drug release under iontophoteric conditions for MB and TMP (without SDS). In just 15 min, the mean% drug concentrations released of TMP, TMP (with SDS) and MB using an electric current ranged from 22.30 to 64.72 mu gml(-1), 6.37-4.59 mu gml(-1) and 11.73-36.57 mu gml(-1) respectively. These concentrations were in excess of those required to induce complete kill of clinical strains of meticillin-resistant Staphylococcus aureus and Burkholderia cepacia. Thus these results support our contention that the iontophoteric delivery of IMP and MB using anti-adherent, electrically-responsive, PEG-crosslinked PMVE/MA hydrogels are a potential option in the rapid PACT treatment of infected wounds. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenomedullin (AM) is an important regulatory peptide involved in both physiological and pathological states. We have previously demonstrated the existence of a specific AM-binding protein (AMBP-1) in human plasma. In the present study, we developed a nonradioactive ligand blotting assay, which, together with high pressure liquid chromatography/SDS-polyacrylamide gel electrophoresis purification techniques, allowed us to isolate AMBP-1 to homogeneity. The purified protein was identified as human complement factor H. We show that AM/factor H interaction interferes with the established methodology for quantification of circulating AM. Our data suggest that this routine procedure does not take into account the AM bound to its binding protein. In addition, we show that factor H affects AM in vitro functions. It enhances AM-mediated induction of cAMP in fibroblasts, augments the AM-mediated growth of a cancer cell line, and suppresses the bactericidal capability of AM on Escherichia coli. Reciprocally, AM influences the complement regulatory function of factor H by enhancing the cleavage of C3b via factor I. In summary, we report on a potentially new regulatory mechanism of AM biology, the influence of factor H on radioimmunoassay quantification of AM, and the possible involvement of AM as a regulator of the complement cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cysteine proteinase released in vitro by Fasciola hepatica was purified to homogeneity by Sephacryl S-200 gel filtration chromatography followed by QAE-Sephadex chromatography. The purified enzyme resolves as a single band with an apparent molecular size of 27 kDa on reducing SDS-polyacrylamide gel electrophoresis; however, under non-reducing conditions it migrates as multiple bands, each with enzymatic activity, in the apparent molecular size range 60-90 kDa. The sequence of the first 20 N-terminal amino acids of the enzyme shows considerable homology with cathepsin L-like proteinases. Immunolocalisation studies revealed that the cathepsin L-like proteinase is concentrated within vesicles in the gut epithelial cells of liver fluke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measles virus Edmonston strain was purified by ultrafiltration followed by two successive sedimentations through sucrose. Purified virus retained infectivity and, when used as an immunogen, elicited high titred antibody to measles antigens by conventional serology. The measles preparations were examined by SDS-PAGE followed by staining. In addition, following PAGE, the purity of these preparations was assessed immunochemically using antisera directed to measles and host cell antigens. The results of these studies demonstrate the utility of the purification method for the preparation of milligram quantities of relatively pure measles virus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult and 3-week-old juvenile Fasciola hepatica were examined for the presence of the cytoskeletal protein actin. Techniques of direct fluorescence using fluorescein isothiocyanate (FITC)-phalloidin and of indirect immunofluorescence using a monoclonal anti-actin antibody (MAA) demonstrated actin in the testes, sub-tegumental and gut musculature, tegumental cell bodies and tegumental spines. In contrast, polyclonal anti-actin antibody (PAA) revealed immunostaining only in the vitellaria. Effective removal of the tegument with 1% (w/v) sodium dodecyl sulphate (SDS) was confirmed by scanning electron microscopy (SEM), and this enabled immunoblotting of whole fluke and tegumental fractions with and without spines. Whole fluke fractions produced three bands corresponding to molecules exhibiting relative molecular weights of 43, 28 and 15 kDa, respectively, whereas the tegumental fraction with spines revealed a single band corresponding to 15 kDa in size. The fraction without spines displayed no bands. The present study localised actin in a number of different tissue types within the liver fluke. Using MAA, three forms of actin have been identified in the whole fluke and a single one in the tegumental spines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary flavonoid intake, especially berry flavonoids, has been associated with reduced risks of cardiovascular disease (CVD) in large prospective cohorts. Few clinical studies have examined the effects of dietary berries on CVD risk factors. We examined the hypothesis that freeze-dried strawberries (FDS) improve lipid and lipoprotein profiles and lower biomarkers of inflammation and lipid oxidation in adults with abdominal adiposity and elevated serum lipids. In a randomized dose-response controlled trial, 60 volunteers [5 men and 55 women; aged 49 ± 10 y; BMI: 36 ± 5 kg/m2 (means ± SDs)] were assigned to consume 1 of the following 4 beverages for 12 wk: 1) low-dose FDS (LD-FDS; 25 g/d); 2) low-dose control (LD-C); 3) high-dose FDS (HD-FDS; 50 g/d); and 4) high-dose control (HD-C). Control beverages were matched for calories and total fiber. Blood draws, anthropometrics, blood pressure, and dietary data were collected at screening (0 wk) and after 12-wk intervention. Dose-response analyses revealed significantly greater decreases in serum total and LDL cholesterol and nuclear magnetic resonance (NMR)–derived small LDL particle concentration in HD-FDS [33 ± 6 mg/dL, 28 ± 7 mg/dL, and 301 ± 78 nmol/L, respectively (means ± SEMs)] vs. LD-FDS (−3 ± 11 mg/dL, −3 ± 9 mg/dL, and −28 ± 124 nmol/L, respectively) over 12 wk (0–12 wk; all P < 0.05). Compared with controls, only the decreases in total and LDL cholesterol in HD-FDS remained significant vs. HD-C (0.7 ± 12 and 1.4 ± 9 mg/dL, respectively) over 12 wk (0–12 wk; all P < 0.05). Both doses of strawberries showed a similar decrease in serum malondialdehyde at 12 wk (LD-FDS: 1.3 ± 0.2 μmol/L; HD-FDS: 1.2 ± 0.1 μmol/L) vs. controls (LD-C: 2.1 ± 0.2 μmol/L; HD-C: 2.3 ± 0.2 μmol/L) (P < 0.05). In general, strawberry intervention did not affect any measures of adiposity, blood pressure, glycemia, and serum concentrations of HDL cholesterol and triglycerides, C-reactive protein, and adhesion molecules. Thus, HD-FDS exerted greater effects in lowering serum total and LDL cholesterol and NMR-derived small LDL particles vs. LD-FDS in the 12-wk study. These findings warrant additional investigation in larger trials. This trial was registered at clinicaltrials.gov as NCT01883401.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼31 and ∼34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼31 kDa and the ∼34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein. © 2014 Galvão et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mycotoxin alternariol (AOH) is an important contaminant of fruits and cereal products. The current study sought to address the effect of a non-toxic AOH concentration on the proteome of the steroidogenic H295R cell model. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture (SILAC) coupled to 1D-SDS-PAGE-LC-MS/MS was applied to subcellular-enriched protein samples. Gene ontology (GO) and ingenuity pathway analysis (IPA) were further carried out for functional annotation and identification of protein interaction networks. Furthermore, the effect of AOH on apoptosis and cell cycle distribution was also determined by the use of flow cytometry analysis. This work identified 22 proteins that were regulated significantly. The regulated proteins are those involved in early stages of steroid biosynthesis (SOAT1, NPC1, and ACBD5) and C21-steroid hormone metabolism (CYP21A2 and HSD3B1). In addition, several proteins known to play a role in cellular assembly, organization, protein synthesis, and cell cycle were regulated. These findings provide a new framework for studying the mechanisms by which AOH modulates steroidogenesis in H295R cell model. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).

Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.

Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.

Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus grows in one of two ways: either (i) predatorily [in a host-dependent (HD) manner], when it invades the periplasm of another Gram-negative bacterium, exporting into the prey co-ordinated waves of soluble enzymes using the prey cell contents for growth; or (ii) in a host-independent (HI) manner, when it grows (slowly) axenically in rich media. Periplasmic invasion potentially exposes B. bacteriovorus to extremes of pH and exposes the need to scavenge electron donors from prey electron transport components by synthesis of metalloenzymes. The twin-arginine transport system (Tat) in other bacteria transports folded metalloenzymes and the B. bacteriovorus genome encodes 21 potential Tat-transported substrates and Tat transporter proteins TatA1, TatA2 and TatBC. GFP tagging of the Tat signal peptide from Bd1802, a high-potential iron-sulfur protein (HiPIP), revealed it to be exported into the prey bacterium during predatory growth. Mutagenesis showed that the B. bacteriovorus tatA2 and tatC gene products are essential for both HI and HD growth, despite the fact that they partially complement (in SDS resistance assays) the corresponding mutations in Escherichia coli where neither TatA nor TatC are essential for life. The essentiality of B. bacteriovorus TatA2 was surprising given that the B. bacteriovorus genome encodes a second tatA homologue, tatA1. Transcription of tatA1 was found to be induced upon entry to the bdelloplast, and insertional inactivation of tatA1 showed that it significantly slowed the rates of both HI and HD growth. B. bacteriovorus is one of a few bacterial species that are reliant on a functional Tat system and where deletion of a single tatA1 gene causes a significant growth defect(s), despite the presence of its tatA2 homologue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides such as neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) have been shown by our research group to be present in human dental pulp tissue. Neuropeptides cannot cross cell membranes and therefore to exert their biological effects they must bind to selected receptors on the surface of target cell membranes. However, the expression of receptor proteins for NPY and/or VIP have yet to be reported in human pulp tissue. The presence of neuropeptide receptors can be conveniently determined by Western blotting using specific anti-receptor antibodies. Objectives: The aim of this work was to identify the presence of the NPY Y1 receptor and the VIP receptor VPAC1 in human dental pulp tissue from both intact and carious teeth using Western blotting. Methods: Pulp tissue was collected from both intact and carious teeth and membrane preparations from these tissues were then subject to sodium dodecyl sulphate gel electrophoresis (SDS-PAGE), transferred to nitrocellulose and probed with specific antibodies to either the NPY Y1 receptor or the VPAC1 receptor. Results: Individual Western blotting experiments revealed the presence of immunoreactive bands corresponding to the known molecular weights of the NPY Y1 and VPAC1 receptor proteins in both intact and carious pulp samples. Conclusions: Demonstration of the presence of NPY Y1 and VPAC1 receptor protein expression in pulpal tissue from intact and carious teeth provides further support for the roles of these neuropeptides in pulpal health and disease.