39 resultados para S. epidermidis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mobile element IS256 causes phase variation of biofilm formation in Staphylococcus epidermidis by insertion and precise excision from the icaADBC operon. Precise excision, i.e., removal of the target site duplications (TSDs) and restoration of the original DNA sequence, occurs rarely but independently of functional transposase. Instead, the integrity of the TSDs is crucial for precise excision. Excision increased significantly when the TSDs were brought into closer spatial proximity, suggesting that excision is a host-driven process that might involve most likely illegitimate recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus epidermidis, the most frequently isolated coagulase-negative staphylococcus, is the leading cause of infection related to implanted medical devices (IMDs). This is directly related to its capability to establish multilayered, highly structured biofilms on artificial surfaces. At present, conventional systemic therapies using standard antimicrobial agents represent the main strategy to treat and prevent medical device-associated infections. However, device-related infections are notoriously difficult to treat and bacteria within biofilm communities on the surface of IMDs frequently outlive treatment, and removal of the medical device is often required for successful therapy. Importantly, major advances in this research area have been made, leading to a greater understanding of the complexities of biofilm formation of S. epidermidis and resulting in significant developments in the treatment and prevention of infections related to this member of the coagulase-negative group of staphylococci. This review will examine the pathogenesis of the clinically significant S. epidermidis and provide an overview of the conventional and emerging antibiofilm approaches in the management of medical device-associated infections related to this important nosocomial pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of the antimicrobial peptide maximin-4, the ultrashort peptide H-Orn-Orn-Trp-Trp-NH(2) , and the lipopeptide C(12) -Orn-Orn-Trp-Trp-NH(2) in preventing adherence of pathogens to a candidate biomaterial were tested utilizing both matrix- and immersion-loaded poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels. Antiadherent properties correlated to both the concentration released and the relative antimicrobial concentrations of each compound against Staphylococcus epidermidis ATCC 35984, at each time point. Immersion-loaded samples containing C(12) -Orn-Orn-Trp-Trp-NH(2) exhibited the lowest adherence profile for all peptides studied over 1, 4, and 24 h. The results outlined in this article show that antimicrobial peptides have the potential to serve as an important weapon against biomaterial associated infections. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prospectively studied the course of colonization and sepsis with Staphylococcus epidermidis among 29 very low birth weight neonates undergoing prolonged umbilical catheterization. S. epidermidis bacteremia occurred in 7 patients. In 6 bacteremia was preceded by positive colonization cultures. Isolates obtained from nares, base of umbilicus, umbilical catheter entry sites, catheter tips and blood were examined for plasmid DNA profiles. In 4 patients the plasmid profiles of the catheter entry site isolates were identical with those of the blood isolates. In the other 3 bacteremic patients plasmid profiles of the catheter entry site and blood isolates were different. No correlation was observed in the plasmid DNA patterns of isolates obtained from catheter tip cultures as compared to the corresponding blood cultures. The blood isolates from bacteremic patients had different plasmid profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular D-Ala-D-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial infection primarily with Staphylococcus spp. and Propionibacterium acnes remains a significant complication following total hip replacement. In this in vitro study, we investigated the efficacy of gentamicin loading of bone cement and pre- and postoperative administration of cefuroxime in the prevention of biofilm formation by clinical isolates. High and low initial inocula, representative of the number of bacteria that may be present at the operative site as a result of overt infection and skin contamination, respectively, were used. When a high initial inoculum was used, gentamicin loading of the cement did not prevent biofilm formation by the 10 Staphylococcus spp. and the 10 P. acnes isolates tested. Similarly, the use of cefuroxime in the fluid phase with gentamicin-loaded cement did not prevent biofilm formation by four Staphylococcus spp. and four P. acnes isolates tested. However, when a low bacterial inoculum was used, a combination of both gentamicin-loaded cement and cefuroxime prevented biofilm formation by these eight isolates. Our results indicate that this antibiotic combination may protect against infection after intra-operative challenge with bacteria present in low numbers as a result of contamination from the skin but would not protect against bacteria present in high numbers as a result of overt infection of an existing implant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial adhesion to silicone elastomer biomaterials is a major problem often resulting in infection and medical device failure. Several strategies have been employed to modulate eukaryotic cell adhesion and to hamper bacterial adherence to polymeric biomaterials. Chemical modification of the surface by grafting of polyethylene glycol (PEG) chains or the incorporation of non-antibiotic antimicrobial agents such as triclosan into the biomaterial matrix may reduce bacterial adhesion. Here, such strategies are simultaneously applied to the preparation of both condensation-cure and addition-cure silicone elastomer systems, seeking a sustained release antimicrobial device biomaterial. The influence of triclosan incorporation and degree of pegylation on antimicrobial release, surface microbial adherence and persistence (Escherichia coli and Staphylococcus epidermidis) were evaluated in vitro. Non-pegylated silicone elastomers provided an increased percentage release of triclosan extending over a relatively short duration (99% release by day 64) compared with their pegylated (4% w/w) counterparts (65% and 72% release by day 64, for condensation and addition-cure systems respectively). Viable E. coli adherence to a non-pegylated silicone elastomer containing 1% w/w triclosan was reduced by over 99% after 24 h compared to the non-pegylated silicone elastomer containing no triclosan. No viable S. epidermidis adhered to any of the triclosan-loaded (>0.1% w/w) formulations other than the control. Persistence of the antimicrobial activity of the triclosan-loaded pegylated silicone elastomers continued for at least 70 days compared to the triclosan-loaded non-pegylated elastomers (at least 49 days). Understanding how PEG affects the release of triclosan from silicone elastomers may prove useful in the development of a biomaterial providing prolonged, effective antimicrobial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial attachment onto intraocular lenses (IOLs) during cataract extraction and IOL implantation is a prominent aetiological factor in the pathogenesis of infectious endophthalmitis. Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) have shown that photosensitizers are effective treatments for cancer, and in the photoinactivation of bacteria, viruses, fungi and parasites, in the presence of light. To date, no method of localizing the photocytotoxic effect of a photosensitizer at a biomaterial surface has been demonstrated. Here we show a method for concentrating this effect at a material surface to prevent bacterial colonization by attaching a porphyrin photosensitizer at, or near to, that surface, and demonstrate the principle using IOL biomaterials. Anionic hydrogel copolymers were shown to permanently bind a cationic porphyrin through electrostatic interactions as a thin surface layer. The mechanical and thermal properties of the materials showed that the porphyrin acts as a surface cross-linking agent, and renders surfaces more hydrophilic. Importantly, Staphylococcus epidermidis adherence was reduced by up to 99.0 ± 0.42% relative to the control in intense light conditions and 91.7± 5.99% in the dark. The ability to concentrate the photocytotoxic effect at a surface, together with a significant dark effect, provides a platform for a range of light-activated anti-infective biomaterial technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods: In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models.

Results: When employing Silescol® membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol® membranes in the corresponding experiments. Approximately 103?cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case.

Conclusion: We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle—punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic antimicrobial agents may prevent device-associated infections caused by Staphylococcus epidermidis and Staphylococcus aureus. This study reports that the cationic antimicrobial polymer poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) was more effective at antagonizing growth of clinical isolates of S. epidermidis than of S. aureus. Importantly, mature S. epidermidis biofilms were significantly inactivated by pDMAEMA. The S. aureus isolates tested were generally more hydrophobic than the S. epidermidis isolates and had a less negative charge, although a number of individual S. aureus and S. epidermidis clinical isolates had similar surface hydrophobicity and charge values. Fluorescence spectroscopy and flow cytometry revealed that fluorescently labelled pDMAEMA interacted strongly with S. epidermidis compared with S. aureus. S. aureus Delta dltA and Delta mprF mutants were less hydrophobic and therefore more susceptible to pDMAEMA than wild-type S. aureus. Although the different susceptibility of S. epidermidis and S. aureus isolates to pDMAEMA is complex, influenced in part by surface hydrophobicity and charge, these findings nevertheless reveal the potential of pDMAEMA to treat S. epidermidis infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whilst there are a number of methods available to characterise the cell surface hydrophobicity (CSH) and cell surface charge (CSC) of microorganisms, there is still debate concerning the correlation of results between individual methods. In this study, the techniques of bacterial adherence to hydrocarbons (BATH) and hydrophobic interaction chromatography (HTC) were used to measure CSH. Electrostatic interaction chromatography (ESIC) and zeta potential (ZP) measurements were used to determine CSC. To allow meaningful comparisons between the BATH and HIC tests, between ESIC and ZP and also between CSH and CSC, the buffer systems employed in each test were standardised (phosphate buffered saline, pH 7.3, 0.01 mM). Isolates of Staphylococcus epidermidis derived from microbial biofilm were used as the test organism in this study. The isolates examined exhibited primarily medium to high CSH and a highly negative CSC. Good correlation of CSH measurement was observed between the BATH and HIC tests (r = 0.89). Good correlation was observed between ESIC (anionic exchange column) and ZP measurements. No correlations were observed between isolate CSC and either increased or decreased CSH. It is recommended that whenever comparisons of various methods to determine either CSC or CSH (by partitioning methods), the buffer systems should remain constant throughout to achieve consistency of results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of three non-antibiotic, antimicrobial agents (taurolidine, chlorhexidine acetate and providone-iodine) on the surface hydrophobicity of the clinical strains Escherichia coli, Staphylococcus saprophyticus, Staphylococcus epidermidis and Candida albicans were examined. Three recognized techniques for hydrophobicity measurements, Bacterial Adherence to Hydrocarbons (BATH), the Salt Aggregation Test (SAT) and Hydrophobic Interaction Chromatography (HIC) were compared. At concentrations reported to interfere with microbial-epithelial cell adherence, all three agents altered the cell surface hydrophobicity. However, these effects failed to exhibit a uniform relationship. Generally, taurolidine and povidone-iodine treatments decreased the hydrophobicity of the strains examined whereas chlorhexidine acetate effects depended upon the micro-organism treated. Subsequently, the exact contribution of altered cell surface hydrophobicity to the reported microbial anti-adherence effects is unclear. Comparison of the three techniques revealed a better correlation between the results obtained with the BATH test and HIC than the results obtained with the BATH and SAT or SAT and HIC. However, these differences may be due to the inaccuracy associated with the visual assessment of results employed by the SAT.