399 resultados para Rural elderly
Resumo:
The proportion of elderly in the population has dramatically increased and will continue to do so for at least the next 50 years. Medical resources throughout the world are feeling the added strain of the increasing proportion of elderly in the population. The effective care of elderly patients in hospitals may be enhanced by accurately modelling the length of stay of the patients in hospital and the associated costs involved. This paper examines previously developed models for patient length of stay in hospital and describes the recently developed conditional phase-type distribution (C-Ph) to model patient duration of stay in relation to explanatory patient variables. The Clinics data set was used to demonstrate the C-Ph methodology. The resulting model highlighted a strong relationship between Barthel grade, patient outcome and length of stay showing various groups of patient behaviour. The patients who stay in hospital for a very long time are usually those that consume the largest amount of hospital resources. These have been identified as the patients whose resulting outcome is transfer. Overall, the majority of transfer patients spend a considerably longer period of time in hospital compared to patients who die or are discharged home. The C-Ph model has the potential for considering costs where different costs are attached to the various phases or subgroups of patients and the anticipated cost of care estimated in advance. It is hoped that such a method will lead to the successful identification of the most cost effective case-mix management of the hospital ward.
Resumo:
Objectives: To identify demographic and socioeconomic determinants of need for acute hospital treatment at small area level. To establish whether there is a relation between poverty and use of inpatient services. To devise a risk adjustment formula for distributing public funds for hospital services using, as far as possible, variables that can be updated between censuses. Design: Cross sectional analysis. Spatial interactive modelling was used to quantify the proximity of the population to health service facilities. Two stage weighted least squares regression was used to model use against supply of hospital and community services and a wide range of potential needs drivers including health, socioeconomic census variables, uptake of income support and family credit, and religious denomination. Setting: Northern Ireland. Main outcome measure: Intensity of use of inpatient services. Results: After endogeneity of supply and use was taken into account, a statistical model was produced that predicted use based on five variables: income support, family credit, elderly people living alone, all ages standardised mortality ratio, and low birth weight. The main effect of the formula produced is to move resources from urban to rural areas. Conclusions: This work has produced a population risk adjustment formula for acute hospital treatment in which four of the five variables can be updated annually rather than relying on census derived data. Inclusion of the social security data makes a substantial difference to the model and to the results produced by the formula.