59 resultados para Rough Sets
Resumo:
Both the existence and the non-existence of a linearly ordered (by certain natural order relations) effective set of comparison functions (=dense comparison classes) are compatible with the ZFC axioms of set theory.
Resumo:
Support vector machine (SVM) is a powerful technique for data classification. Despite of its good theoretic foundations and high classification accuracy, normal SVM is not suitable for classification of large data sets, because the training complexity of SVM is highly dependent on the size of data set. This paper presents a novel SVM classification approach for large data sets by using minimum enclosing ball clustering. After the training data are partitioned by the proposed clustering method, the centers of the clusters are used for the first time SVM classification. Then we use the clusters whose centers are support vectors or those clusters which have different classes to perform the second time SVM classification. In this stage most data are removed. Several experimental results show that the approach proposed in this paper has good classification accuracy compared with classic SVM while the training is significantly faster than several other SVM classifiers.
Resumo:
Reduced-size polarized (ZmPolX) basis sets are developed for the second-row atoms X = Si, P, S, and Cl. The generation of these basis sets follows from a simple physical model of the polarization effect of the external electric field which leads to highly compact polarization functions to be added to the chosen initial basis set. The performance of the ZmPolX sets has been investigated in calculations of molecular dipole moments and polarizabilities. Only a small deterioration of the quality of the calculated molecular electric properties has been found. Simultaneously the size of the present reduced-size ZmPolX basis sets is about one-third smaller than that of the usual polarized (PolX) sets. This reduction considerably widens the range of applications of the ZmPolX sets in calculations of molecular dipole moments, dipole polarizabilities, and related properties.
Resumo:
Complexity is conventionally defined as the level of detail or intricacy contained within a picture. The study of complexity has received relatively little attention-in part, because of the absence of an acceptable metric. Traditionally, normative ratings of complexity have been based on human judgments. However, this study demonstrates that published norms for visual complexity are biased. Familiarity and learning influence the subjective complexity scores for nonsense shapes, with a significant training x familiarity interaction [F(1,52) = 17.53, p <.05]. Several image-processing techniques were explored as alternative measures of picture and image complexity. A perimeter detection measure correlates strongly with human judgments of the complexity of line drawings of real-world objects and nonsense shapes and captures some of the processes important in judgments of subjective complexity, while removing the bias due to familiarity effects.
Resumo:
Eight new microsatellite loci were characterized for Littorina saxatilis (Olivi, 1792) and tested for their cross-hybridization in congeners. All loci were polymorphic in Irish and Celtic Sea samples, with an average number of alleles per locus of 15 (range, 6–31). Observed and expected locus heterozygosities ranged from 26 to 85% and from 53 to 92%, respectively. Three loci showed excess homozygosity and significant departures from Hardy–Weinberg expectations in one sample, possibly due to null alleles, population structuring or inbreeding. No linkage disequilibrium was detected among loci within samples. A high degree of cross-hybridization was observed in closely related congeners and most loci were polymorphic. These markers will be useful for investigating population genetic diversity and connectivity in coastal populations, especially for marine reserve design.
Resumo:
Motivation: Recently, many univariate and several multivariate approaches have been suggested for testing differential expression of gene sets between different phenotypes. However, despite a wealth of literature studying their performance on simulated and real biological data, still there is a need to quantify their relative performance when they are testing different null hypotheses.
Results: In this article, we compare the performance of univariate and multivariate tests on both simulated and biological data. In the simulation study we demonstrate that high correlations equally affect the power of both, univariate as well as multivariate tests. In addition, for most of them the power is similarly affected by the dimensionality of the gene set and by the percentage of genes in the set, for which expression is changing between two phenotypes. The application of different test statistics to biological data reveals that three statistics (sum of squared t-tests, Hotelling's T2, N-statistic), testing different null hypotheses, find some common but also some complementing differentially expressed gene sets under specific settings. This demonstrates that due to complementing null hypotheses each test projects on different aspects of the data and for the analysis of biological data it is beneficial to use all three tests simultaneously instead of focusing exclusively on just one.
Resumo:
Hunter and Konieczny explored the relationships between measures of inconsistency for a belief base and the minimal inconsistent subsets of that belief base in several of their papers. In particular, an inconsistency value termed MIVC, defined from minimal inconsistent subsets, can be considered as a Shapley Inconsistency Value. Moreover, it can be axiomatized completely in terms of five simple axioms. MinInc, one of the five axioms, states that each minimal inconsistent set has the same amount of conflict. However, it conflicts with the intuition illustrated by the lottery paradox, which states that as the size of a minimal inconsistent belief base increases, the degree of inconsistency of that belief base becomes smaller. To address this, we present two kinds of revised inconsistency measures for a belief base from its minimal inconsistent subsets. Each of these measures considers the size of each minimal inconsistent subset as well as the number of minimal inconsistent subsets of a belief base. More specifically, we first present a vectorial measure to capture the inconsistency for a belief base, which is more discriminative than MIVC. Then we present a family of weighted inconsistency measures based on the vectorial inconsistency measure, which allow us to capture the inconsistency for a belief base in terms of a single numerical value as usual. We also show that each of the two kinds of revised inconsistency measures can be considered as a particular Shapley Inconsistency Value, and can be axiomatically characterized by the corresponding revised axioms presented in this paper.
Resumo:
We construct a bounded linear operator on a separable, reflexive and strictly convex Banach space whose resolvent norm is constant in a neighbourhood of zero.
Resumo:
In the present paper, we introduce a notion of a style representing abstract, complex objects having characteristics that can be represented as structured objects. Furthermore, we provide some mathematical properties of such styles. As a main result, we present a novel approach to perform a meaningful comparative analysis of such styles by defining and using graph-theoretic measures. We compare two styles by comparing the underlying feature sets representing sets of graph structurally. To determine the structural similarity between the underlying graphs, we use graph similarity measures that are computationally efficient. More precisely, in order to compare styles, we map each feature set to a so-called median graph and compare the resulting median graphs. As an application, we perform an experimental study to compare special styles representing sets of undirected graphs and present numerical results thereof. (C) 2007 Elsevier Inc. All rights reserved.