32 resultados para Romã
Resumo:
Thermal comfort is defined as “that condition of mind which expresses satisfaction with the thermal environment’ [1] [2]. Field studies have been completed in order to establish the governing conditions for thermal comfort [3]. These studies showed that the internal climate of a room was the strongest factor in establishing thermal comfort. Direct manipulation of the internal climate is necessary to retain an acceptable level of thermal comfort. In order for Building Energy Management Systems (BEMS) strategies to be efficiently utilised it is necessary to have the ability to predict the effect that activating a heating/cooling source (radiators, windows and doors) will have on the room. The numerical modelling of the domain can be challenging due to necessity to capture temperature stratification and/or different heat sources (radiators, computers and human beings). Computational Fluid Dynamic (CFD) models are usually utilised for this function because they provide the level of details required. Although they provide the necessary level of accuracy these models tend to be highly computationally expensive especially when transient behaviour needs to be analysed. Consequently they cannot be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. The test case used in this work is a room of the Environmental Research Institute (ERI) Building at the University College Cork (UCC). ROMs have shown that they are sufficiently accurate with a total error of less than 1% and successfully retain a satisfactory representation of the phenomena modelled. The number of zones in a ROM defines the size and complexity of that ROM. It has been observed that ROMs with a higher number of zones produce more accurate results. As each ROM has a time to solution of less than 20 seconds they can be integrated into the BEMS of a building which opens the potential to real time physics based building energy modelling.
Resumo:
Reduced Order Models (ROMs) have proven to be a valid and efficient approach to model the thermal behaviour of building zones. The main issues associated with the use of zonal/lumped models are how to (1) divide the domain (lumps) and (2) evaluate the pa- rameters which characterise the lump-to-lump exchange of energy and momentum. The object of this research is to develop a methodology for the generation of ROMs from CFD models. The lumps of the ROM and their average property values are automatically ex- tracted from the CFD models through user defined constraints. This methodology has been applied to validated CFD models of a zone of the Environmental Research Insti- tute (ERI) Building in University College Cork (UCC). The ROM predicts temperature distribution in the domain with an average error lower than 2%. It is computationally efficient with an execution time of 3.45 seconds. Future steps in this research will be the development of the procedure to automatically extract the parameters which define lump-to-lump energy and momentum exchange. At the moment these parameters are evaluated through the minimisation of a cost function. The ROMs will also be utilised to predict the transient thermal behaviour of the building zone.
Resumo:
Rai, D., Koidis, A., Rawson, A., McLouglin, P., Brunton, N. (2010). Characterisation of polyacetylenes in carrot extracts using electrospray ionisation quadrupole time of flight mass spectrometry. Delegate CD-Rom PS2.8, EFFoST Annual Meeting, Dublin, Ireland, 10 -12/11/2010 (Poster).
Resumo:
Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.
Resumo:
Accurate modelling of the internal climate of buildings is essential if Building Energy Management Systems (BEMS) are to efficiently maintain adequate thermal comfort. Computational fluid dynamics (CFD) models are usually utilised to predict internal climate. Nevertheless CFD models, although providing the necessary level of accuracy, are highly computationally expensive, and cannot practically be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. ROMs are shown to be adequately accurate with a total error below 5% and to retain satisfactory representation of the phenomena modelled. Each ROM has a time to solution under 20seconds, which opens the potential of their integration with BEMS, giving real-time physics-based building energy modelling. A parameter study was conducted to investigate the applicability of the extracted ROM to initial boundary conditions different from those from which it was extracted. The results show that the ROMs retained satisfactory total errors when the initial conditions in the room were varied by ±5°C. This allows the production of a finite number of ROMs with the ability to rapidly model many possible scenarios.
Resumo:
he Science of Lost Medieval Gaelic Graveyard tells the story of the discovery in 2003 of a graveyard and the foundations of a small forgotten stone church at Ballyhanna, in Ballyshannon, Co. Donegal, as part of the N15 Bundoran–Ballyshannon Bypass archaeological works. This led to the excavation of one of the largest collections of medieval burials ever undertaken on this island. Over 1,200 individuals were excavated from the site at Ballyhanna during the winter of 2003–4, representing 1,000 years of burial through the entire Irish medieval period. The discovery led to the establishment of a cross-border research collaboration—the Ballyhanna Research Project—between Queen’s University Belfast and the Institute of Technology, Sligo, which has brought to life this lost Gaelic graveyard.
This book shows how cutting-edge scientific research may aid our understanding and interpretation of archaeology and reveal new insights into past societies. For example, the use of ancient DNA analysis represented the first biomolecular archaeological evaluation of a medieval population to date and provided evidence that cystic fibrosis was much less prevalent in the medieval period than today. The Science of Lost Medieval Gaelic Graveyard is about a community who lived in Gaelic Ireland, about their lifestyles, health and diet. It tells us of their deaths and of their burial traditions, and through examining all of these aspects, it reveals the ebb and flow of their lives.
The book is accompanied by a CD-ROM which includes supplementary information from the Ballyhanna Research Project and the original excavation and survey reports for all of the archaeological sites on the N15 Bundoran–Ballyshannon Bypass.
Resumo:
The conditions required for the production of isolated attosecond pulses from relativistically oscillating mirrors (ROM) are investigated numerically and experimentally. In simulations, carrier-envelope-phase-stabilized three-cycle pulses are found to be sufficient to produce isolated attosecond pulses, while two-cycle pulses will predominantly lead to isolated attosecond pulses even in the absence of carrier-envelope stabilization. Using a state-of-the-art laser system delivering three-cycle pulses at multiple-terawatt level, we have generated higher harmonics up to 70 eV photon energy via the ROM mechanism. The observed spectra are in agreement with theoretical expectations and highlight the potential of few-cycle-driven ROM harmonics for intense isolated attosecond pulse generation for performing extreme ultraviolet-pump extreme ultraviolet-probe experiments. © 2012 American Physical Society.